Laboratorio M1K Analog Devices: Filtros Eletricos

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar

Laboratório: Introdução aos filtros elétricos

Este laboratório foi baseado no material disponibilizado pela Analog Devices, fabricante do módulo educacional M1K Analog Devices: [1]

Objetivos

Conhecer o princípio de funcionamento dos filtros elétricos RC passa baixa e passa alta.

Equipamento e Materiais

  • Modulo Analog Devices M1K e software Pixelpulse
  • Componentes Eletrônicos:
    • Resistores: 68Ω,100Ω 10KΩ, 200KΩ
    • Capacitores: 10uF, 22uF e 47uF
    • Leds
    • Diodo 1N914
    • Circuito Integrado AD8561

Procedimentos Práticos

  1. Identifique os resistores e capacitores a serem utilizados no experimento. Observe que os capacitores eletrolíticos tem polaridade, portanto, devem ser montados no circuito considerando os terminais positivo e negativo.
  2. Monte na matriz de contatos o filtro RC da figura, usando o resistor de 68Ω e o capacitor de 22uF: [1]
  3. Selecione o canal A do módulo Analog Devices M1K para Gerar Tensão/Medir Corrente e o canal B para Medir Voltagem.
  4. Configure o canal A para gerar uma onda senoidal com 10 Hz de frequência e tensão variando de 0 V a 5 V. Observe no canal B a forma de onda sobre o capacitor.
  5. Gradualmente aumente a frequência da onda senoidal até 1000 Hz e observe no canal B a redução da amplitude da forma de onda sobre o capacitor.
  6. Ajuste a frequência da onda senoidal no canal A até que a amplitude da onda no canal B seja 3,5 V.

Fundamentos sobre Filtros RC

Fundamentos sobre o Circuito RC

Num circuito RC série, quando um degrau de tensão é aplicado, inicialmente toda tensão aparece toda sobre o resistor, pois o capacitor está descarregado e a tensão sobre ele é zero. A corrente inicial que fluirá no circuito será dada pela Lei de Ohm (I = V / R) e vai ser responsável por iniciar a carga do capacitor. A medida que o capacitor vai sendo carregado, a tensão sobre ele vai aumentando, diminuindo a tensão resultante sobre o resistor, segundo a Lei de Kirchoff, e, consequentemente, diminuindo também a corrente no circuito. Quanto o capacitor se carregar totalmente, a tensão de 5V estará toda sobre o capacitor e a corrente no circuito será reduzida a zero.

O processo de carga do capacitor segue uma curva que desacelera exponencialmente a medida que a tensão sobre o capacitor aumenta. A taxa de crescimento da carga do capacitor depende do produto RC, chamado de constante de tempo (segundos) e é representado pela letra grega tau (τ). Numa constante de tempo o capacitor é carregado com 63% de sua carga. Em cinco constantes de tempo a carga do capacitor chega a 99.3%. O tempo da carga total tende ao infinito, entretanto, na prática, considera-se que em cinco constantes de tempo o capacitor está carregado.

Num circuito RC série, a tensão sobre o capacitor (VC), em função da tensão total aplicada (VT) é dada pela expressão:

No primeiro circuito, a constante de tempo era de (100 KΩ)*(47 μF) = 4.7 segundos, fazendo com que a carga/descarga total do capacitor fosse de cerca de 23,5 segundos.

Observações e Conclusões

  • '

Referências


Evandro.cantu (discussão) 10h03min de 13 de julho de 2020 (-03)