Camada de Transporte

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar

Camada de Transporte

A Camada de Transporte está situada entre a camada aplicação e a camada rede da Arquitetura Internet e tem a função de prover um canal de comunicação lógico fim-a-fim entre os processos de aplicação rodando em diferentes computadores [1].

Os dois Protocolos de Transporte da Internet são o TCP e o UDP:

Protocolo TCP
Oferece um serviço orientado a conexão, com transmissão de dados garantida ou livre de erros.
Protocolo UDP
Oferece um serviço não orientado a conexão, com transmissão de dados tipo melhor esforço, portanto sujeita a erros.

Apesar da diferença nos serviços oferecidos pelo TCP e UDP, ambos implementam um serviço de multiplexação/demultiplexação de aplicações e um serviço de checagem de erros através do método de cheksum, como será visto na sequência.

Suporte a serviços comuns para as aplicações

O objetivo das redes de pacotes é oferecer um suporte de comunicação para que as aplicações rodando em dois computadores remotos possam trocar informações.

Intuitivamente, podemos ver a rede como provendo um canal lógico de comunicação para que os processos de aplicação cliente e servidor possam se comunicar. Para usar este canal de comunicação, os programas de aplicação cliente enviam seus pedidos através de uma porta, que conecta o cliente ao servidor, e através da qual ele espera a resposta do serviço é requisitado.

Dois tipos comuns de serviço solicitado pelas aplicações à rede são:

  • Serviço tipo pedido/resposta (request/reply);
  • Serviço tipo fluxo de áudio/vídeo (audio/video streaming).

A paginação na Web é um exemplo de serviço tipo pedido/resposta, onde um processo cliente solicita uma informação e um processo servidor fornece a informação solicitada. Não há restrições de tempo entre o pedido e a resposta, entretanto, é necessário que a informação transmitida seja livre de erros.

Uma conversa telefônica via Internet é um exemplo de fluxo de áudio, neste caso há restrições temporais na transmissão, por outro lado, um pequeno silêncio ocasionado por um erro ou ruído pode não ser um problema grave para o entendimento geral da conversa.

->

Para estes dois tipos de requisições de serviços a Internet dispõem de dois protocolos de transporte:

  • TCP (Transmission Control Protocol), que oferece serviço orientado a conexão e com transmissão de dados garantida;
  • UDP (User Datagram Protocol), que oferece serviço sem conexão tipo melhor esforço (best effort).

As aplicações conhecidas como o telnet, correio eletrônico, transferência de arquivos e WWW usam o TCP. Outras aplicações usam o UDP, como o DNS (Domain Name System) e aplicações multimídia como voz sobre Internet e aplicações de áudio e vídeo[1].

Quando uma aplicação usa TCP o cliente e o servidor trocam pacotes de controle entre si antes de enviarem os pacotes de dados. Isto é chamado de procedimento de estabelecimento de conexão (handshaking), onde se estabelecem os parâmetros para a comunicação. Uma vez concluído o handshaking a conexão é dita estabelecida e os dois sistemas terminais podem trocar dados. O serviço de transferência garantida, que assegura que os dados trocados são livres de erro, o que é conseguido a partir de temporizações, mensagens de reconhecimento e retransmissão de pacotes. Por exemplo, quando um sistema terminal B recebe um pacote de A, ele envia um reconhecimento; quando o sistema terminal A recebe o reconhecimento ele sabe que o pacote que ele enviou foi corretamente recebido; caso A não recebe confirmação, ele assume que o pacote não foi recebido por B e retransmite o pacote.

Com o UDP não há handshaking, portanto, é não orientado a conexexão. Quando um lado de uma aplicação quer enviar pacotes ao outro lado ele simplesmente envia os pacotes. Como o serviço é não garantido, também não há reconhecimento, de forma que a fonte nunca tem certeza que o pacote foi recebido pelo destinatário. Como o serviço é mais simples, os dados podem ser enviados mais rapidamente.

Multiplexação/demultiplexação de aplicações através de portas

A camada rede e o protocolo IP são responsáveis por entregar datagramas, ou pacotes IP, de um host a outro host, identificados pelos endereços IP origem e destino.

Como em cada host podem haver vários processos de aplicação rodando, a camada transporte, com os protocolos TCP e UDP, são responsáveis por entregar pacotes, chamados segmentos, de um processo rodando em um host origem a outro processo rodando no host destino, identificados pelos números de porta origem e destino. Este serviço é chamado multiplexação / demultiplexação de aplicações.

Exemplo 1: Cliente e servidor HTTP

Um servidor de aplicações espera conexões em portas bem conhecidas. Por exemplo, um servidor Web utiliza a porta 80 para aceitar conexões. Quando um navegador Web inicia uma seção, ele envia ao servidor um segmento TCP com porta destino 80 e coloca como número de porta origem uma porta que não esteja sendo utilizada no host cliente, por exemplo, a porta 18123. A porta 18123 será onde o cliente vai esperar a resposta do servidor. Quando o servidor recebe o segmento, ele verifica que o mesmo é endereçado a porta 80 e então sabe que se trata da aplicação Web. No envio da resposta o servidor inverte as portas origem e destino. Enviando ao cliente um segmento com porta destino 18123 e origem 80.

Portas reservadas e portas de uso geral

  • Portas de 0 a 1023: Portas reservadas, utilizadas pela aplicações bem conhecidas.
  • Portas de 1024 a 65535: Portas de uso geral.
Algumas portas reservadas
Porta Transporte Aplicação
13 TCP Daytime
13 UDP Daytime
20 TCP FTP [Default Data]
21 TCP FTP [Control]
22 TCP SSH
23 TCP Telnet
25 TCP SMTP (email)
53 UDP DNS
80 TCP Web HTTP
110 TCP POP3
443 TCP HTTPS

Exemplo 2: Três clientes e um servidor Web

No host A temos dois processos cliente Web acessando o servidor C (porta 80), cada um identificado por uma porta origem (1028 e 1029, respectivamente). No host B temos outro processo cliente (porta 1155) está acessando o servidor C (porta 80). O servidor encaminha as respostas ao cliente identificando o IP e a porta correspondente.
Perguntas
  1. É possível que o host A e o host B acessem o servidor C utilizando a mesma porta origem? Explique.
  2. Liste quantos e quais campos são necessários na estrutura de dados que o servidor deve manter para identificar corretamente cada um dos processos clientes que acessam cada um dos serviços que ele oferece.

Checksum

O mecanismo de checksum permite a detecção de erros nos dados transmitidos em um enlace de comunicação.

Para implementar este mecanismo o TCP e o UDP possuem em seu cabeçalho um campo de 16 bits, chamado checksum. Para determinar o valor do campo checksum, o emissor faz o complemento de 1 da soma de todos as palavras de 16 bits do segmento e coloca o resultado no campo cheksum [1].

Por exemplo, suponha que temos três palavras de 16 bits sendo transmitidas:

 0110011001100110
 0101010101010101
 0000111100001111

A soma será

 0110011001100110
 0101010101010101
+________________
 1011101110111011

Adicionando a terceira palavra a esta soma

 1011101110111011
 0000111100001111
+________________
 1100101011001010

O complemento de 1 é obtido invertendo cada bit 1 por 0 e vice-versa. Desta forma o complemento da soma será 0011010100110101 o qual será o cheksum. No lado do receptor, todas as palavras de 16 bits recebidas são adicionadas, incluindo o cheksum. Se não houve erros na transmissão, a soma será 1111111111111111. Se um dos bits for 0, então é sabido que houve erros.

Referências

  1. 1,0 1,1 1,2 KUROSE, J.F; ROSS K. W. Redes de Computadores e a Internet: Uma abordagem top-down, São Paulo: Pearson, 2010.

--Evandro.cantu (discussão) 10h33min de 12 de junho de 2014 (BRT)