Capacitores

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar

Capacitores

Fundamentos sobre o Capacitor

Os Capacitores são dispositivos que armazenam energia elétrica em um campo elétrico. Permitem maior fluxo de corrente a medida que a frequência do sinal elétrico aumenta. Para um sinal senoidal, a fase da corrente é adiantada de 90 graus em relação a tensão.

A unidade de capacitância é o Faraday (F). O Faraday é uma unidade muito grande, portanto, é muito comum usar submúltiplos para especificar a maioria dos capacitores utilizados em circuitos eletrônicos, como μF, nF e pF.

Entre outras aplicações, os capacitores são utilizados em circuitos eletrônicos para acoplamento CA, isolando o circuito de polarização dos circuitos alimentados por fontes CC, do sinal CA manipulado pelo circuito. Outra aplicação importante dos capacitores é para implementar filtros de sinal.

Um capacitor é formado por duas placas condutoras separadas por um material isolante, chamado dielétrico. A carga de um capacitor é criada pela acumulação ou depleção de elétrons livres em cada placa condutora, produzindo um campo elétrico no dielétrico, e, por consequência, produzindo um tensão elétrica entre as placas.

Uma carga elétrica (Q) sobre um capacitor, produz uma tensão (V) entre as placas, em função da capacitância (C), segundo a relação:

ou, isolando a carga elétrica:

A corrente elétrica é definida como a quantidade de carga elétrica por unidade de tempo. É expressa matematicamente como a derivada da carga elétrica no tempo:

ou seja, a corrente no capacitor é função da derivada da tensão no tempo, multiplicada pela capacitância.

A derivada indica que a corrente elétrica no capacitor é maior quanto maior for a variação da tensão. Desta forma, para uma tensão senoidal, quanto maior a frequência da onda, maior o fluxo da corrente em um capacitor. Para uma tensão constante, a corrente no capacitor é zero.

Fundamentos sobre o Circuito RC

Num circuito RC série, quando um degrau de tensão é aplicado, inicialmente toda tensão aparece toda sobre o resistor, pois o capacitor está descarregado e a tensão sobre ele é zero. A corrente inicial que fluirá no circuito será dada pela Lei de Ohm (I = V / R) e vai ser responsável por iniciar a carga do capacitor. A medida que o capacitor vai sendo carregado, a tensão sobre ele vai aumentando, diminuindo a tensão resultante sobre o resistor, segundo a Lei de Kirchhoff das Malhas, e, consequentemente, diminuindo também a corrente no circuito. Quanto o capacitor se carregar totalmente, a tensão de 5V estará toda sobre o capacitor e a corrente no circuito será reduzida a zero.

O processo de carga do capacitor segue uma curva que desacelera exponencialmente a medida que a tensão sobre o capacitor aumenta. A taxa de crescimento da carga do capacitor depende do produto RC, chamado de constante de tempo, dada em segundos, e é representado pela letra grega tau (τ). No tempo de uma constante de tempo o capacitor é carregado com 63% de sua carga. Em cinco constantes de tempo a carga do capacitor chega a 99.3%. O tempo da carga total tende ao infinito, entretanto, na prática, considera-se que em cinco constantes de tempo o capacitor está carregado.

Por exemplo, para um circuito com C = 47 μF e R = 100 KΩ, a constante de tempo calculada é de 4.7 segundos. Desta forma, a carga/descarga do capacitor, em cinco constantes de tempo, fica em cerca de 23,5 segundos.

Num circuito RC série, a tensão sobre o capacitor (VC), em função da tensão total aplicada no circuito (VT) é dada pela expressão:

Laboratório

Laboratório: Capacitores e Circuitos RC

Referências



Evandro.cantu (discussão) 13h53min de 10 de setembro de 2021 (-03)