Sistemas Numericos: mudanças entre as edições

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar
Sem resumo de edição
Linha 141: Linha 141:
*Contegem em Hexadecimal:
*Contegem em Hexadecimal:


0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,<br/>
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,<br/>
20, ... 2F,
20, ... 2F,<br/>
30, ... 3F,
30, ... 3F,<br/>
...
...<br/>
90, ... 9F,
90, ... 9F,<br/>
A0, ... AF,
A0, ... AF,<br/>
B0, ... BF,
B0, ... BF,<br/>
...
...<br/>
F0, ... FF,
F0, ... FF,<br/>
100, ..., 10F,
100, ..., 10F,<br/>
...
...<br/>


===Conversão de Bases:===
===Conversão de Bases:===

Edição das 16h25min de 25 de fevereiro de 2014

Sistemas Numéricos

Sistema Decimal:

Base: 10
Digitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Exemplo: 5374 = 5 x 103 + 3 x 102 + 7 x 101 + 4 x 100

Sistema Binário:

Base: 2
Digitos: 0, 1
Exemplo: 1100 = 1 x 23 + 1 x 22 + 0 x 21 + 0 x 20 -> 8 + 4 + 0 + 0 = 12

Sistema Binário na Wikipédia

Vídeo: Sistema binário

Bits Combinações Binários
1 21 = 2 0

1

2 22 = 4 00

01

10

11

3 23 = 8 000

001

010

011

100

101

110

111

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024 -> 1 Kibi bit Prefixos Binários

Sistema Octsal:

Base: 8
Digitos: 0, 1, 2, 3, 4, 5, 6, 7
Correspondência entre binário de 3 bits e octal:
Decimal Binário Octal
0 000 0
1 001 1
2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7

Sistema Hexadecimal:

Base: 16
Digitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Correspondência entre binário de 4 bits e hexadecimal:
Decimal Binário Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
  • Contegem em Hexadecimal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
20, ... 2F,
30, ... 3F,
...
90, ... 9F,
A0, ... AF,
B0, ... BF,
...
F0, ... FF,
100, ..., 10F,
...

Conversão de Bases:

  • Binário -> Decimal
Para converter de binário para decimal, soma-se os pesos das posições em que o número binário tiver um bit 1.
Exemplos:
101101 = 1 x 25 + 1 x 23 + 1 x 22 + 1 x 20 = 32 + 8 + 4 + 1 = 45
10100011 = 128 + 32 + 2 + 1 = 163
  • Decimal -> Binário
Uma das maneiras de converter um número decimal em binário e realizar divisões sucessivas por 2.
Exemplo:
25/2 = 12 + resto 1
12/2 = 6 + resto 0
6/2 = 3 + resto 0
3/2 = 1 + resto 1
1/2 = 0 + resto 1
-> 11001 (O bit mais significativo (MSB) é o último resto)
Outra maneira de converter um número decimal em binário é expressar o decimal como soma de potências de 2 (processo inverso a conversão de binário para decimal).
  • Binário <-> Hexadecimal
Cada digito hexa é convertido no equivalente binário de 4 bits (conforme tabela), e vice-versa, cada quatro bits binários é convertido no hexa equivalente.
Exemplos: Hexa -> Binário
A3 = 1010 0011
7E = 0111 1110
Exemplos: Binário -> Hexa
110110 = 0011 0110 = 36 (zeros são acrescentados a esquerda para formar grupos de 4 bits)
11000101 = 1100 0101 = C5

Resumo Sistema Binário

  • Exemplo de binário de 8 bits: 10111100
Valores posicionais 128 64 32 16 8 4 2 1
Potências de 2 27 26 25 24 23 22 21 20
Exemplo binário 1 0 1 1 1 1 0 0
MSB LSB
MSB: Bit mais significativo (most significant bit)
LSB: Bit menos significativo (less significant bit)

Resumo sobre conversões de base:

  1. Quando converter binário em decimal, use o método da soma dos pesos de cada digito;
  2. Quando converter decimal em binário, use o método de divisões sucessivas por 2, reunindo os restos da divisão;
  3. Quando converter binário em hexa, agrupe os bits em grupo de quatro e converta cada grupo no hexa equivalente;
  4. Quando converter hexa em binário, converta cada digito em 4 bits equivalentes.