Logica Binaria: mudanças entre as edições
Sem resumo de edição |
|||
Linha 33: | Linha 33: | ||
Expressão booleana: | Expressão booleana: | ||
S = | S = ~A | ||
===Porta E (AND)=== | ===Porta E (AND)=== | ||
Linha 85: | Linha 85: | ||
Expressões booleanas: | Expressões booleanas: | ||
;Não E | ;Não E | ||
S = | S = ~(A . B) | ||
;Não OU | ;Não OU | ||
S = | S = ~(A + B) | ||
===Porta OU-EXCLUSIVO (XOR)=== | ===Porta OU-EXCLUSIVO (XOR)=== | ||
Linha 122: | Linha 122: | ||
;Exemplo | ;Exemplo | ||
Circuito construído a partir da expressão lógica: | Circuito construído a partir da expressão lógica: | ||
S = (A + B).( | S = (A + B).(~B + C) | ||
[[Arquivo:ExpressaoBooleana.png]] | [[Arquivo:ExpressaoBooleana.png]] | ||
Note que: | Note que: | ||
*As expressões (A + B) e ( | *As expressões (A + B) e (~B + C) são entradas de uma porta E; | ||
*A expressão A + B é gerada por portas OU; | *A expressão A + B é gerada por portas OU; | ||
*A expressão | *A expressão ~B + C também é gerada por portas OU, com um inversor na entrada B. | ||
;Exercício | ;Exercício | ||
#Construa a tabela verdade para o circuito apresentado no exemplo anterior: S = (A + B).( | #Construa a tabela verdade para o circuito apresentado no exemplo anterior: S = (A + B).(~B + C). | ||
#Construa o circuito gerado pela expressão S = A.C + | #Construa o circuito gerado pela expressão S = A.C + ~(B.C) + ~A.B.C | ||
#Construa a tabela verdade para o circuito do exercício anterior. | #Construa a tabela verdade para o circuito do exercício anterior. | ||
Linha 141: | Linha 141: | ||
#A . 1 = A | #A . 1 = A | ||
#A . A = A | #A . A = A | ||
#A . | #A . ~A = 0 | ||
#A + 0 = A | #A + 0 = A | ||
#A + 1 = 1 | #A + 1 = 1 | ||
#A + A = A | #A + A = A | ||
#A + | #A + ~A = 1 | ||
====Teoremas de DeMorgan==== | ====Teoremas de DeMorgan==== | ||
* | *~(A + B) = ~A . ~/B | ||
* | *~(A . B) = ~A + ~B | ||
[[Arquivo:TeoremasMorgan.png]] | [[Arquivo:TeoremasMorgan.png]] | ||
Linha 162: | Linha 162: | ||
===Circuitos com portas lógicas=== | ===Circuitos com portas lógicas=== | ||
#Construir e simular o circuito representado pelas expressões lógicas: | #Construir e simular o circuito representado pelas expressões lógicas: | ||
#*S = (A + B).( | #*S = (A + B).(~B + C) | ||
#*S = A.C + | #*S = A.C + ~(B.C) + ~A.B.C | ||
#Construir e simular circuitos para comprovar experimentalmente os Teoremas de DeMorgan: | #Construir e simular circuitos para comprovar experimentalmente os Teoremas de DeMorgan: | ||
#* | #*~(A + B) = ~A . ~B | ||
#* | #*~(A . B) = ~A + ~B | ||
#Construir e simular o circuito Ou-Exclusivo com portas AND, OR e NOT, conforme a figura: [[Arquivo:OuExclusivo.png | 300px]] | #Construir e simular o circuito Ou-Exclusivo com portas AND, OR e NOT, conforme a figura: [[Arquivo:OuExclusivo.png | 300px]] | ||
#*Represente o circuito acima como uma expressão lógica. | #*Represente o circuito acima como uma expressão lógica. |
Edição das 13h30min de 20 de abril de 2016
Lógica Binária
A lógica binária é a base de todo o processamento computacional. Na verdade, são estas operações mais básicas que constituem todo o poderio dos computadores. Qualquer operação, por mais complexa que pareça, é traduzida internamente pelo processador para operações lógicas, realizadas por meio de portas lógicas [1].
Representação elétrica dos bits 0 e 1
Uma forma típica de representar os bits 0 e 1 nos sistemas eletrônicos a através de níveis de tensão elétrica.
Nos circuitos integrados (CI) TTL (transistor transistor logic) utiliza-se os seguintes níveis de tensão:
- 0V (nível BAIXO) para representar o 0;
- 5V (nível ALTO) para representar 1.
Outras tecnologias de CI, como a CMOS, utilizam outros níveis de tensão.
Portas Lógicas
As portas lógicas implementam os operadores da lógica binária e são os principais componentes da eletrônica digital.
Porta NÃO (NOT)
Implementa o operador NÃO (NOT), ou negação binária, resulta no complemento do operando, ou seja, será um bit 1 se o operando for 0, e será 0 caso contrário, conforme podemos confirmar pela tabela verdade, onde A é o bit de entrada e S é o bit de saída (out):
A | S |
0 | 1 |
1 | 0 |
Expressão booleana:
S = ~A
Porta E (AND)
Implementa o operador E (AND), ou conjunção binária, devolve um bit 1 sempre que ambos operandos sejam 1, conforme podemos confirmar pela tabela verdade, onde A e B são bits de entrada e S é o bit de saída (out):
A | B | S |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Expressão booleana:
S = A . B
Porta OU (OR)
Implementa o operador OU (OR), ou disjunção binária, devolve um bit 1 sempre que pelo menos um dos operandos seja 1, conforme podemos confirmar pela tabela verdade, onde A e B são bits de entrada e S é o bit de saída (out):
A | B | S |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Expressão booleana:
S = A + B
Portas Não E (NAND) e Não OU (NOR)
Correspondem aos operadores E e OU, seguidos por uma negação, respectivamente.
Expressões booleanas:
- Não E
S = ~(A . B)
- Não OU
S = ~(A + B)
Porta OU-EXCLUSIVO (XOR)
Implementa o operador OU-EXCLUSIVO (XOR), ou disjunção binária exclusiva, devolve um bit 1 sempre que o número de operandos iguais a 1 é ímpar, conforme podemos confirmar pela tabela verdade, onde A e B são bits de entrada e S é o bit de saída (out):
A | B | S |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
- Exercícios
- Determine a saída da porta OU considerando que as entradas A e B variam de acordo com o diagrama de tempo mostrado.
- Determine a saída da porta E considerando que as entradas A e B variam de acordo com o diagrama de tempo mostrado.
Descrevendo circuitos lógicos algebricamente
Qualquer circuito lógico pode ser descrito usando os três operadores lógicos fundamentais: E, OU e NÃO.
Por exemplo, se tivermos um circuito descrito por S = A . B . C, sabemos que trata-se de uma porta E de três entradas. Se tivermos um circuito descrito por S = A + /B, sabemos que trata-se de uma porta OU com a entrada B invertida.
- Exemplo
Circuito construído a partir da expressão lógica:
S = (A + B).(~B + C)
Note que:
- As expressões (A + B) e (~B + C) são entradas de uma porta E;
- A expressão A + B é gerada por portas OU;
- A expressão ~B + C também é gerada por portas OU, com um inversor na entrada B.
- Exercício
- Construa a tabela verdade para o circuito apresentado no exemplo anterior: S = (A + B).(~B + C).
- Construa o circuito gerado pela expressão S = A.C + ~(B.C) + ~A.B.C
- Construa a tabela verdade para o circuito do exercício anterior.
Álgebra de Boole
- Teoremas Booleanos
- A . 0 = 0
- A . 1 = A
- A . A = A
- A . ~A = 0
- A + 0 = A
- A + 1 = 1
- A + A = A
- A + ~A = 1
Teoremas de DeMorgan
- ~(A + B) = ~A . ~/B
- ~(A . B) = ~A + ~B
- Exercícios
- Comprovar os dois Teoremas de DeMorgam com tabelas verdade.
Laboratório e Exercícios de Simulação
- Para este laboratório será utilizado o Simulador de Circuitos Lógicos - Logisim
- Veja no link as instruções para download e instalação do programa.
Circuitos com portas lógicas
- Construir e simular o circuito representado pelas expressões lógicas:
- S = (A + B).(~B + C)
- S = A.C + ~(B.C) + ~A.B.C
- Construir e simular circuitos para comprovar experimentalmente os Teoremas de DeMorgan:
- ~(A + B) = ~A . ~B
- ~(A . B) = ~A + ~B
- Construir e simular o circuito Ou-Exclusivo com portas AND, OR e NOT, conforme a figura:
- Represente o circuito acima como uma expressão lógica.
Referências
- ↑ TOCCI, R.J.; WIDMER, N.S.; MOSS, G.L. Sistemas Digitais: princípios e aplicações, São Paulo: Pearson, 2011.
--Evandro.cantu (discussão) 10h50min de 12 de junho de 2014 (BRT)