Laboratorio M1K Analog Devices: Filtros Eletricos: mudanças entre as edições
Linha 52: | Linha 52: | ||
A '''frequência de corte''' (f<sub>c</sub>) é definida como a frequência na qual a '''reatância capacitiva''' é igual a '''resistência''', ou seja R = 1/2πf<sub>c</sub>C, que resulta: | A '''frequência de corte''' (f<sub>c</sub>) é definida como a frequência na qual a '''reatância capacitiva''' é igual a '''resistência''', ou seja R = 1/2πf<sub>c</sub>C, que resulta: | ||
f<sub>c</sub> = 1 / 2πRC | f<sub>c</sub> = 1 / 2πRC | ||
Na '''frequência de corte''' (f<sub>c</sub>) a tensão na saída do filtro cai a cerca de 70% da tensão da entrada. | |||
==Observações e Conclusões== | ==Observações e Conclusões== |
Edição das 17h19min de 13 de julho de 2020
Laboratório: Introdução aos filtros elétricos
Este laboratório foi baseado no material disponibilizado pela Analog Devices, fabricante do módulo educacional M1K Analog Devices: [1]
Objetivos
Conhecer o princípio de funcionamento dos filtros elétricos RC passa baixa e passa alta.
Construir circuitos detectores de pico, com diodos e capacitores, visando detectar a máxima amplitude do sinal de saída de um filtro elétrico.
Equipamento e Materiais
- Modulo Analog Devices M1K e software Pixelpulse
- Componentes Eletrônicos:
- Resistores: 68Ω,100Ω 10KΩ, 200KΩ
- Capacitores: 10uF, 22uF e 47uF
- Leds
- Diodo 1N914
- Circuito Integrado AD8561
Procedimentos Práticos
Filtro passa baixa
- Identifique os resistores e capacitores a serem utilizados no experimento. Observe que os capacitores eletrolíticos tem polaridade, portanto, devem ser montados no circuito considerando os terminais positivo e negativo.
- Monte na matriz de contatos o filtro RC da figura, usando o resistor de 68Ω e o capacitor de 22uF: [1]
- Selecione o canal A do módulo Analog Devices M1K para Gerar Tensão/Medir Corrente e o canal B para Medir Voltagem.
- Configure o canal A para gerar uma onda senoidal com 10 Hz de frequência e tensão variando de 0 V a 5 V. Observe no canal B a forma de onda sobre o capacitor.
- Gradualmente aumente a frequência da onda senoidal até 1000 Hz e observe no canal B a redução da amplitude da forma de onda sobre o capacitor.
- Ajuste a frequência da onda senoidal no canal A até que a amplitude da onda no canal B seja 3,5 V.
Filtro passa alta
- Monte na matriz de contatos o filtro RC da figura, usando o resistor de 68Ω e o capacitor de 10uF: [1]
- Configure o canal A para gerar uma onda senoidal com 10 Hz de frequência e tensão variando de 0 V a 5 V. Observe no canal B a forma de onda sobre o capacitor.
- Gradualmente aumente a frequência da onda senoidal até 1000 Hz e observe no canal B o aumento da amplitude da forma de onda sobre o capacitor.
- Ajuste a frequência da onda senoidal no canal A até que a amplitude da onda no canal B seja 3,5 V.
Fundamentos sobre Filtros Elétricos
Filtros elétricos são circuitos que permitem filtrar determinadas frequências de um sinal CA permitindo a passagem de algumas frequências e limitando a passagem de outras. A frequência de transição entre as frequências permitidas e as não permitidas é chamada frequência de corte (fc).
Um filtro que permite a passagem de frequências abaixo da frequência de corte é chamado de filtro passa baixas e um filtro que permite a passagem de frequências a acima frequência de corte é chamado de filtro passa altas.
Os filtros elétricos mais simples podem ser construídos com elementos passivos, como resistores e capacitores (filtros RC) ou resistores e indutores (filtros RL).
Filtros RC
Com circuitos RC série é possível construir filtros elétricos passa baixas e passa altas. Os filtros operam sobre o divisor de tensão entre o resistor (R) e a reatância do capacitor (C).
A reatância é a oposição a passagem de corrente elétrica de capacitores e indutores em circuitos de corrente alternada. A reatância é um parâmetro que depende da frequência do sinal de corrente alternada.
Para um capacitor a reatância é dada por 1/2πfC. Pela expressão pode-se ver que a reatância capacitiva varia inversamente proporcional a frequência, ou seja, se a frequência aumenta a reatância diminui e vice versa. Para corrente contínua (frequência zero) a reatância capacitiva tende ao infinito, ou seja, o capacitor se comporta como um circuito aberto.
Na análise do divisor de tensão do filtro RC passa baixas, verificamos que a medida que a frequência aumenta, a reatância diminui, portanto, diminui a tensão sobre o capacitor, consequentemente, a tensão de saída do filtro diminui. Para o filtro RC passa altas verificamos o contrário, a medida que a frequência aumenta, aumenta a tensão na saída do filtro.
A frequência de corte (fc) é definida como a frequência na qual a reatância capacitiva é igual a resistência, ou seja R = 1/2πfcC, que resulta:
fc = 1 / 2πRC
Na frequência de corte (fc) a tensão na saída do filtro cai a cerca de 70% da tensão da entrada.
Observações e Conclusões
- '
Referências
Evandro.cantu (discussão) 10h03min de 13 de julho de 2020 (-03)