Aritmetica Binaria: mudanças entre as edições

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar
Linha 182: Linha 182:
#100 : 5
#100 : 5


==Números binários fracionários com ponto fixo==
==Números binários fracionários==


Os '''números binários fracinários com ponto fixo''', ou números com vírgula, também seguem a lógica dos números decimais com ponto flutuante.
Os '''números binários fracionários''', ou '''números com vírgula''', também seguem a lógica dos números decimais com fracionários.


Exemplo de '''número decimal com ponto fixo''':
Exemplo de '''número decimal fracionário''':


  53,74<sub>10</sub>
  53,74<sub>10</sub>
  = 5 x 10<sup>1</sup> + 3 x 10<sup>0</sup> + 7 x 10<sup>-1</sup> + 4 x 10<sup>-2</sup>
  = 5 x 10<sup>1</sup> + 3 x 10<sup>0</sup> + 7 x 10<sup>-1</sup> + 4 x 10<sup>-2</sup>


Exemplo de '''número binário com ponto fixo''':
Exemplo de '''número binário fracionário''':


  101,1<sub>2</sub>  
  101,1<sub>2</sub>  
Linha 204: Linha 204:


===Exercício===
===Exercício===
Converta os números decimais em binário a faça as divisões usando ponto fixo:
Converta os números decimais em binário a faça as divisões usando o ponto fraconário:
#10 : 4
#10 : 4
#20 : 16
#20 : 16

Edição das 13h56min de 17 de abril de 2019

Aritmética Binária[1]

"Só existem 10 tipos de pessoas no mundo, as que entendem binário e as que não entendem".

Adição em binário

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10 = 0 e vai 1 para próxima posição (Carry = 1)
  • 1 + 1 + 1 = 11 = 1 e vai 1 para próxima posição (Carry = 1)
Exemplo
  1   1    <- vai 1
   101010
 + 110011
 --------
  1011101
Exercícios
  1. Efetue a soma dos seguintes pares de números binários:
    • 10110 + 00111
    • 011101 + 010010
    • 10001111 + 00000001

Subtração em binário

  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1 precisa emprestar 1 (10 - 1 = 1)
Exemplo
    1      <- empresta 1
   110011
 - 101010
 --------
   001001

Exercícios

Efetue a subtração dos seguintes pares de números binários:

  1. 101101 - 010010
  2. 10001011 - 00110101
  3. 101011101 - 011100110

Converta os pares números decimais em binário e efetue as operações:

  1. 85 + 73
  2. 233 + 120
  3. 233 - 120
  4. 255 - 127
  5. 128 - 15

Multiplicação em binário

  • 0 * 0 = 0
  • 0 * 1 = 0
  • 1 * 0 = 0
  • 1 * 1 = 1
Exemplo
A multiplicação segue a lógica da multiplicação em decimal:
     1010 (multiplicando)
   x  101 (multiplicador)
   ------
     1010
    0000  (produtos parciais)
 + 1010
 --------
   110010 (produto)

A maioria dos computadores digitais pode somar apenas dois números binários por vez. Por isto, os produtos parciais não podem ser somados ao mesmo tempo. Em vez disto, são somados dois de cada vez.

Número de dígitos do produto = Número de dígitos do multiplicando + Número de dígitos do multiplicador.

  • Exemplo: 8 bits x 8 bits = 16 bits

Exercícios

Efetue a multiplicação dos seguintes pares de números binários:

  1. 1001 * 1011
  2. 10110 * 00111
  3. 011101 * 010010
  4. 11011101 * 10110110

Método para somar várias parcelas simultaneamente

Método apresentado pelo aluno Fernando Santin (TADS 2016):

         11011101 (multiplicando)
       x 10110110 (multiplicador)
         --------
      111
    1111111       (vai 1, 2 ou 3)*
 11111111111      
 ||||||||00000000 (produtos parciais)
 |||||||11011101| 
 ||||||11011101||  
 |||||00000000|||
 ||||11011101||||    
 |||11011101|||||     
 ||00000000||||||      
+|11011101|||||||       
 ----------------
 1001110100011110 (produto)

Lógica
  • Se o número de 1s é par, dá 0 e vai a metade do número de 1s;
  • Se o número de 1s é impar, dá 1 e vai a metade do número de 1s que restou;
1 + 1 = 0 e vai 1
1 + 1 + 1 = 1 e vai 1
1 + 1 + 1 + 1 = 0 e vai 2 
1 + 1 + 1 + 1 + 1 = 1 e vai 2 
1 + 1 + 1 + 1 + 1 + 1 = 0 e vai 3
1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 e vai 3 
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 e vai 4 
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 e vai 4 

Alternativa para diminuir o número de 1s na próxima coluna

Quando vai 2 (ou 3 ou 4) 1s, posso transferir o binário correspondente, por exemplo, 10 (ou 11 ou 100) para as próximas colunas à esquerda, cada bit na sua posição correspondente.

Exemplo:

         11011101 (multiplicando)
       x 10110110 (multiplicador)
         --------
     110 1
 11101011101
 ||||||||00000000 (produtos parciais)
 |||||||11011101|
 ||||||11011101||
 |||||00000000|||
 ||||11011101||||    
 |||11011101|||||     
 ||00000000||||||      
+|11011101|||||||       
 ----------------
 1001110100011110 (produto)
  || ||||||||
  || |||||||1 e vai 1
  || ||||||0 e vai 10
  || |||||0 e vai 1
  || ||||0 e vai 11
  || |||1 e vai 10
  || ||0 e vai 10
  || |1 e vai 1
  || 1 e vai 10
  ||
  |0 e vai 1
  0 e vai 1

Exercícios

Converta os pares números decimais em binário e efetue as operações:

  1. 12 * 10
  2. 170 * 31
  3. 170 * 128

Divisão em binário

A divisão em binário segue a lógica da divisão em decimal. O processo é inclusive mais simples, pois quando verificamos quantas vezes o divisor cabe dentro do dividendo, existem apenas duas possibilidades, 0 ou 1.

Exemplo de divisão:

1001 : 11   (9 : 3 = 3)
 11    11
---
  11
  11
  --
   0
1010 : 10   (10 : 2 = 5)
10     101
--
 010
  10
  --
   0

Exercício

Converta os números decimais em binário a faça as divisões:

  1. 16 : 4
  2. 30 : 6
  3. 80 : 10
  4. 100 : 5

Números binários fracionários

Os números binários fracionários, ou números com vírgula, também seguem a lógica dos números decimais com fracionários.

Exemplo de número decimal fracionário:

53,7410
= 5 x 101 + 3 x 100 + 7 x 10-1 + 4 x 10-2

Exemplo de número binário fracionário:

101,12 
= 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1
= 5,5
Algumas potências negativas de 2
2-1 = 1/2  = 0,5
2-2 = 1/4  = 0,25
2-3 = 1/8  = 0,125
2-4 = 1/16 = 0,0625

Exercício

Converta os números decimais em binário a faça as divisões usando o ponto fraconário:

  1. 10 : 4
  2. 20 : 16

Números positivos e negativos

Números sem sinal
A representação de números sem sinal em um computador aproveita todos os bits do número para representar quantidades: de 0 até 2n - 1 (2n valores diferentes).
Por exemplo, um número de 8 bits pode armazenar números binários de 00000000 até 11111111 (de 0 a 255 em decimal). Isto representa a magnitude do número.
Exemplo:
N = 8 bits
Números sem sinal: 0 ≤ X ≤ 255
Números positivos e negativos
A representação dos números positivos e negativos em um computador também permite representar quantidades em função do número de bits do número, entretanto, precisam reservar um bit para a representação do sinal (+ ou -). Isto é feito em geral acrescentando ao número um outro bit, chamado bit de sinal.

Quando trabalhamos com binários com sinal, somente podemos representar números com a metade da magnitude de um binário sem sinal, pois o bit mais significativo é reservado para o sinal, por exemplo:

N = 8 bits
Binário sem sinal: 0 ≤ X ≤ 255
Binário com sinal: -127 ≤ X ≤ 127

A forma mais utilizada de representar números binários positivos e negativos é o método chamado complemento de 2.

Complemento de 2

Sinal e magnitude
No método do complemento de 2 o bit mais a esquerda (MSB) representa o sinal:
  • 0 indica número positivo;
  • 1 indica número negativo.
Os (N - 1) bits restantes representam a magnitude do número.

Binários positivos

Para os números binários positivos, o bit de sinal é 0 e os n-1 bits restantes representam a magnitude do número, que pode ser determinada de forma direta.

Exemplo:
001010102 = + 4210

Binários negativos

Para representar os números binários negativos é necessário calcular o complemento de 2 do número, em dois passos:

  1. Calcula-se o complemento de 1 do número (veja abaixo);
  2. Soma-se 1 ao complemento de 1.
    Despreza-se o transporte no bit mais significativo (chamado de carry externo), caso exista.
Complemento de 1
O complemento de 1 de um binário é o simétrico dele, com todos os bits complementados, incluindo o bit de sinal.
Complemento de 1: Troque 0 por 1 e vice-versa.
Exemplos
Veja a forma de representar números decimais com sinal como números binário com sinal no método do complemento de 2, usando um total de 5 bits (incluindo o bit de sinal).
  • Número decimal +13
É positivo, portanto é representado de forma direta:
1310 = 11012
Anexando o sinal o temos:
+13 = 01101
      |
      Bit de sinal
  • Número decimal -13
É negativo, portanto sua magnitude deve ser representada na forma de complemento de 2:
 1310 = 11012 (magnitude)
Calculando o complemento de 2:
 0010 (complemento de 1)
+   1
------
 0011 (complemento de 2)
Anexando o sinal o temos:
-13 = 10011
      |
      Bit de sinal

Extensão do sinal

Nos exemplos anteriores foi necessário usar um total de cinco bits para representar os números com sinal, um bit a mais que o necessário para representar a magnitude do número.

Normalmente os computadores usam registros para armazenar os números binários que são múltiplos de quatro bits, como 4, 8, 16, 32 ou 64. Por exemplo, em um sistema que representa números de 8 bits, o bit mais significativo (MSB) é o sinal e os outros sete são a magnitude.

Veja o caso dos números dos exemplos anteriores:

+13 = 00001101
      |
      Bit de sinal
Como é positivo, basta acrescentar zeros a esquerda.
-13 = 11110011
      |  |
      |  Bit de sinal no formato de cinco bits
      Extensão do bit de sinal no formato de oito bits.
Como é negativo, acrescentamos uns a esquerda.

Negação

A negação é a operação de conversão de um número positivo em seu equivalente negativo, ou de um número negativo em seu equivalente positivo.

Para realizar a negação de um número basta calcular seu complemento de 2.

Exemplo de binário com sinal de oito bits

Positivo:

+ 4210 = 001010102 ( 1 bit de sinal + 7 bits magnitude)

Negativo:

Passo 1: calcula-se o complemento 1 do número
 00101010 (positivo)
 11010101 (complemento 1)
Passo 2: soma-se 1 ao complemento 1
 11010101
+       1
---------
 110101102 = - 4210 (bit de sinal + complemento de 2)

Negação: a negação de um número negativo será o seu simétrico positivo:

 110101102 = - 4210 (negativo)
Passo 1: calcula-se o complemento 1 do número
 00101001 (complemento 1)
Passo 2: soma-se 1 ao complemento 1
 00101001
+       1
---------
 001010102 = 4210 (simétrico positivo)

Aritmética com complemento de 2

A subtração pode ser implementada como soma do complemento de 2. Isto permite que a adição e a subtração sejam efetuadas pelo mesmo circuito digital.

Exemplo:

 Operação: + 410 - 310 (representados em binários de 4 bits)
   410 = 01002
   310 = 00112
  -310 = 1100 + 1 = 11012 (complemento de 1 + 1 = complemento de 2)
 Realizando a soma do positivo com o negativo:
    0100
   +1101
   -----
   10001 
   |
   Bit de carry externo desprezado

Exercícios:

  1. Represente os números decimais com sinal como números binários com sinal no sistema de complemento de 2, usando um total de 8 bits (bit de sinal + 7 bits de magnitude):
    • +3
    • -2
    • +8
    • -8
    • +56
    • -100
  2. Efetue a subtração dos seguintes pares de números binários positivos, usando complemento de 2. Converter o resultado para decimal, indicando se é positivo ou negativo:
    • (00101101) - (00010010) -> números de 8 bits: sinal + magnitude
    • (00010010) - (00101101) -> números de 8 bits: sinal + magnitude
    • (000010001011) - (000000110101) -> números de 12 bits: sinal + magnitude
    • (000101011101) - (000011100110) -> números de 12 bits: sinal + magnitude
  3. Converta os números decimais em binário de 8 bits, com sinal, e realize as operações indicadas usando soma, usando complemento de 2 para representar os negativos. Converter o resultado para decimal, indicando se é positivo ou negativo:
    • 55 - 77
    • - 43 - 61
    • - 15 - 28

Sobre a multiplicação no sistema de complemento de 2

  1. Número de bits do produto:
    • O número de bits do produto será o dobro do numero de bits do multiplicando e do multiplicador. Por exemplo, de multiplicando e multiplicador forem de 8 bits, o produto será de 16 bits. O MSB é sempre o bit de sinal.
  2. Sinal do produto:
    • Se os dois números forem positivos, poderão ser multiplicados diretamente e o resultado será positivo (bit de sinal 0);
    • Se os dois números forem negativos, representados em complemento de 2, deve-se obter o complemento de 2 dos números para convertê-los em positivos e em seguida multiplicá-los. O produto será positivo (bit de sinal 0);
    • Se um número for positivo e o outro negativo, o negativo deverá ser convertido em positivo, através do complemento de 2, para então multiplicar os números. Como o resultado deve ser negativo, o produto deverá ser convertido em negativo, através do complemento de 2 (bit de sinal 1).

Exercícios

  1. Converta os números decimais em binário de 8 bits, com sinal, e realize as operações de multiplicação indicadas, explicitando se os produtos são positivos ou negativos.:
    • (-43) * (+61)
    • (-15) * (-28)
        00111101 (61)
        00101011 (43)
      * --------
      1111
    11111111 
        00111101
       00111101 
      00000000  
     00111101   
    00000000    
   00111101     
 + -------------
0000101000111111 (2623)
Deve-se passar o resultado para negativo, pois o produto de (-43) * (+61) -e negativo.

Carry e Overflow

Carry interno

Em uma soma (ou subtração em complemento de 2) de números binários sem sinal, toda vez que "vai 1" em uma coluna para a coluna da esquerda, temos um carry interno.

Exemplo
      1    <- vai 1 (carry interno)
   101010
 + 010011
 --------
   111101

Carry externo

Caso o "vai 1" ocorra no bit mais significativo (MSB) temos um carry externo. Neste caso, este bit de carry poderá ser utilizado para indicar que o resultado da soma não cabe nesta quantidade de bits.

Exemplo
  1   1    <- vai 1 (O "vai 1" do bit MSB é um carry externo, o outro um carry interno)
   101010  (6 bits)
 + 110011  (6 bits)
 --------
  1011101  (7 bits!)

Overflow aritmético

O overflow ocorre quando o resultado de uma operação supera a capacidade do registro usado para guardar este resultado.

Para somas ou subtração de números com sinal (+ ou -), o overflow ocorre caso o sinal do resultado não seja aquele que seria o esperado (por exemplo, um resultado negativo da soma de dois números positivos):

Exemplo
Soma dos números binários +9 com +8, ambos com 4 bits de magnitude e 1 bit de sinal:
 +9  ->  0 1001
 +8  ->  0 1000
        --------
         1 0001  <- Magnitude incorreta
         |
         Sinal incorreto
Explicação do overflow no exemplo dado:
Com números em complemento de 2 é possível representar a faixa de valores entre -2N-1 ≤ X ≤ 2N-1 - 1, onde n é o número de bits. No exemplo n = 5, logo pode representar valores entre -25-1 ≤ X ≤ 25-1 - 1, ou seja, -16 ≤ X ≤ 15. Como resultado da operação (+9) + (+8) teria que dar 17, ocorreu o overflow.

Flags de carry e overflow

As CPU (Unidades Centrais de Processamento) normalmente dispõe de um registrador de estado (status register) com alguns bits para indicar se em uma operação ocorreu um carry externo ou overflow.

_ _ C _ O _ _ _

Portanto, é importante checar:

  • Flag carry (C) após soma ou subtração de números sem sinal;
  • Flag overflow (O) após soma ou subtração de números com sinal.

Referências

  1. TOCCI, R.J.; WIDMER, N.S.; MOSS, G.L. Sistemas Digitais: princípios e aplicações, São Paulo: Pearson, 2011.

--Evandro.cantu (discussão) 11h40min de 23 de fevereiro de 2017 (BRT)