Seguidor de Linha com controle PID: mudanças entre as edições

De Wiki Cursos IFPR Foz
Ir para navegaçãoIr para pesquisar
 
(16 revisões intermediárias pelo mesmo usuário não estão sendo mostradas)
Linha 11: Linha 11:
==Controle de velocidade de robô Seguidor de Linha==
==Controle de velocidade de robô Seguidor de Linha==


Um robô Seguidor de Linha equipado com motores de '''corrente contínua''' tem seu '''controle de velocidade''' e '''sentido de rotação''' a partir de '''tensão elétrica''' variável aplicada em seus terminais:
Um robô Seguidor de Linha equipado com dois motores de '''corrente contínua''', os quais tem seu '''controle de velocidade''' e '''sentido de rotação''' a partir de '''tensão elétrica''' variável aplicada em seus terminais:
*'''Sentido de rotação''': Tensão positiva gira em um sentido e tensão negativa em outro sentido;
*'''Sentido de rotação''': Tensão positiva gira em um sentido e tensão negativa em outro sentido;
*'''Velocidade''': Controlada pela amplitude da tensão aplicada.
*'''Velocidade''': Controlada pela amplitude da tensão aplicada.


;Arduíno e Ponte H: Com o '''Arduíno''' equipado com um módulo '''Ponte H''' permite o controle de motores de corrente contínua através de '''saídas digitais e analógicas''':
;Arduíno e Ponte H: O '''Arduíno''' equipado com um módulo '''Ponte H''' permite o controle de motores de corrente contínua através de '''saídas digitais e analógicas''':
#O '''sentido de rotação''' dos motores é realizado a partir de '''saídas digitais''', com LOW para um sentido e HIGH para o outro.
#O '''sentido de rotação''' dos motores é realizado a partir de '''saídas digitais''', com LOW para um sentido e HIGH para o outro.
#O '''controle da velocidade''' dos motores é realizado a partir de '''"saídas analógicas"''', com '''modulação PWM''' de 8 bits, correspondendo a valores decimais entre O e 255. Estes valores correspondem a faixa entre 0 V e 5 V em caso de tensão nominal de 5 V.
#O '''controle da velocidade''' dos motores é realizado a partir de '''"saídas analógicas"''', com '''modulação PWM''' de 8 bits, correspondendo a valores decimais entre O e 255. Estes valores correspondem a faixa entre 0 V e 5 V em caso de tensão nominal de 5 V.


:Entretanto, dependendo dos motores, a faixa de ajuste da velocidades geralmente varia de '''valorMínimo''' a '''255''', onde o valorMínimo é a modulação PWM mínima para romper a inércia dos motores (algo entre 40 e 80, dependendo do tipo de motores e do peso do robô).
:Entretanto, dependendo dos motores, a faixa de ajuste da velocidades geralmente varia de '''valorMínimo''' a '''255''', onde o valorMínimo é a modulação PWM mínima para romper a inércia dos motores (algo entre 60 e 80, dependendo do tipo de motores e do peso do robô).


;Funcionamento do Seguidor de Linha e a ação do Controle:   
;Funcionamento do Seguidor de Linha e a ação do Controle:   
Linha 34: Linha 34:


==Hardware do Robô Seguidor de Linha==
==Hardware do Robô Seguidor de Linha==
O '''hardware''' do '''Robô Seguidor de Linha com Controle''' PID possui como módulos principais um '''Arduíno Micro''', um '''vetor de sensores de reflectância QTR-8''', um '''drive para motores DC L9110''' e um '''regulador de tensão'''.
[[Arquivo:SeguidorLinhaPIDa.jpg|300px]]
===Arduíno Micro===
[[Arquivo:PinosArduinoMicro.png|400px]]


===Vetor de sensores QTR-8===
===Vetor de sensores QTR-8===
Linha 44: Linha 51:


;Biblioteca para Arduíno: [https://www.pololu.com/docs/0J19 Arduino Library for the Pololu QTR Reflectance Sensors]
;Biblioteca para Arduíno: [https://www.pololu.com/docs/0J19 Arduino Library for the Pololu QTR Reflectance Sensors]
;Leitura dos sensores: O programa utiliza uma função disponível na '''biblioteca QTR-8''' que fornece a '''posição''' do vetor em relação a linha, variando de 0 a 7000 (sensor 1 até sensor 8). Com o vetor no centro da linha retorna o valor 3500.
[[Arquivo:VetorSensoresQTR-RC.png|400px]]
:Cálculo do erro:
erro = (posição - 3500)/1000 => -3,5 =< erro =< +3,5
===Drive para Motor DC L9110===
;[http://me.web2.ncut.edu.tw/ezfiles/39/1039/img/617/L9110_2_CHANNEL_MOTOR_DRIVER.pdf Driver L9110]
Exemplo de uso:
*[https://www.bananarobotics.com/shop/How-to-use-the-HG7881-(L9110)-Dual-Channel-Motor-Driver-Module How-to-use-the-L9110]


==Outros protótipos de hardware testados==
==Outros protótipos de hardware testados==
Linha 59: Linha 80:
===Vetor de Sensores e Determinação do Erro===
===Vetor de Sensores e Determinação do Erro===


O '''Seguidor de Linha''' utiliza um '''vetor com sete sensores''' para seguir a linha e determinar o '''erro''' do robô em relação a linha.  
A primeira versão do '''Seguidor de Linha''' utilizava um '''vetor com sete sensores''' para seguir a linha e determinar o '''erro''' do robô em relação a linha.  


Dependendo da posição do vetor sobre a linha, '''apenas um''' ou '''dois sensores''' podem reconhecer a linha ao mesmo tempo, como mostra as figuras abaixo <ref NAME=LabGaragem>http://labdegaragem.com/profiles/blogs/tutorial-rob-seguidor-de-linha-com-controle-pid-e-ajustes-por</ref>:
Dependendo da posição do vetor sobre a linha, '''apenas um''' ou '''dois sensores''' podem reconhecer a linha ao mesmo tempo, como mostra as figuras abaixo <ref NAME=LabGaragem>http://labdegaragem.com/profiles/blogs/tutorial-rob-seguidor-de-linha-com-controle-pid-e-ajustes-por</ref>:


[[Arquivo:VetorSensores1.png|400px]]
[[Arquivo:VetorSensores1.png|300px]]
:Apenas sensor central (s3) reconhece a linha.
:Apenas sensor central (s3) reconhece a linha.


[[Arquivo:VetorSensores2.png|400px]]
[[Arquivo:VetorSensores2.png|300px]]
:Sensor central (s3) e sensor (s4) reconhecem a linha.
:Sensor central (s3) e sensor (s4) reconhecem a linha.


Linha 109: Linha 130:
----
----


[[Categoria:Sistemas de Controle]] [[Categoria:Arduíno]]
[[Categoria:Sistemas de Controle]] [[Categoria:Arduíno]] [[Categoria:Robótica]]

Edição atual tal como às 12h07min de 14 de abril de 2022

Seguidor de Linha com controle PID

Teoria sobre Sistemas de Controle PID

Sistemas de Controle
Um resumo da teoria sobre Sistemas de Controle em Malha Fechada e do Controle Proporcional Integral Derivativo.

Ações de Controle PID sobre o Seguidor de Linha

Ações de Controle PID sobre o Seguidor de Linha
Descrição das ações de Controle PID sobre o Seguidor de Linha, hipóteses e problemas a serem experimentados.

Controle de velocidade de robô Seguidor de Linha

Um robô Seguidor de Linha equipado com dois motores de corrente contínua, os quais tem seu controle de velocidade e sentido de rotação a partir de tensão elétrica variável aplicada em seus terminais:

  • Sentido de rotação: Tensão positiva gira em um sentido e tensão negativa em outro sentido;
  • Velocidade: Controlada pela amplitude da tensão aplicada.
Arduíno e Ponte H
O Arduíno equipado com um módulo Ponte H permite o controle de motores de corrente contínua através de saídas digitais e analógicas:
  1. O sentido de rotação dos motores é realizado a partir de saídas digitais, com LOW para um sentido e HIGH para o outro.
  2. O controle da velocidade dos motores é realizado a partir de "saídas analógicas", com modulação PWM de 8 bits, correspondendo a valores decimais entre O e 255. Estes valores correspondem a faixa entre 0 V e 5 V em caso de tensão nominal de 5 V.
Entretanto, dependendo dos motores, a faixa de ajuste da velocidades geralmente varia de valorMínimo a 255, onde o valorMínimo é a modulação PWM mínima para romper a inércia dos motores (algo entre 60 e 80, dependendo do tipo de motores e do peso do robô).
Funcionamento do Seguidor de Linha e a ação do Controle
  1. Suponha que um Seguidor de Linha seja programado para percorrer a pista com uma velocidade normal estabelecida com a modulação PWM velNormal = 120 e que tenhamos somente o controle proporcional ativo, com Kp = 20.
  2. Suponha que em dado momento tenhamos erro = 1, com o robô derivando para esquerda.
Neste caso, a ação do controle proporcional modificará a trajetória do robô aumentando a velocidade do motor esquerdo e diminuindo a velocidade do motor direito:
velMotorEsq = velNormal + Kp * erro = 120 + 20 * 1 = 140
velMotorDir = velNormal - Kp * erro = 120 - 20 * 1 = 100
Ajuste dos parâmetros PID
O projeto apresentado em [1] utiliza motores de passo também controlados por modulação PWM. O autor sugere iniciar com Kp = 25, com Ki = 0 e Kd = 0.
  • Experimentalmente foi aumentando o valor de Kp de forma que o robô continuasse a seguir linha de forma estável. O autor chegou a um valor de Kp = 50 após testes.
  • Posteriormente, ajustou novo valor para Kp e Kd para 1/2 Kp utilizado com o controle proporcional único e prosseguiu com novos testes.
  • O autor não implementou o controle Ki.

Hardware do Robô Seguidor de Linha

O hardware do Robô Seguidor de Linha com Controle PID possui como módulos principais um Arduíno Micro, um vetor de sensores de reflectância QTR-8, um drive para motores DC L9110 e um regulador de tensão.

Arduíno Micro

Vetor de sensores QTR-8

O vetor de sensores de reflectância QTR-8 possui 8 leds IR/fototransistores (emissores infravermelho/receptores) montados em uma única placa, projetado para ser utilizado em seguidores de linha.

Há dois tipos de sensores QTR-8:

  • QTR-8A: Utiliza leitura analógica dos sensores
  • QTR-8RC: Utiliza portas digitais para fazer leitura dos sensores
Biblioteca para Arduíno
Arduino Library for the Pololu QTR Reflectance Sensors
Leitura dos sensores
O programa utiliza uma função disponível na biblioteca QTR-8 que fornece a posição do vetor em relação a linha, variando de 0 a 7000 (sensor 1 até sensor 8). Com o vetor no centro da linha retorna o valor 3500.

Cálculo do erro:
erro = (posição - 3500)/1000 => -3,5 =< erro =< +3,5

Drive para Motor DC L9110

Driver L9110

Exemplo de uso:

Outros protótipos de hardware testados

Ajuste de parâmetros via Bluetooth

Para facilitar o ajuste dos parâmetros, foi introduzido um módulo bluetooth no robô para que os parâmetros sejam transferidos via Bluetooth de um aplicativo em um celular Android.

O aplicativo foi desenvolvido com o App Inventor.

A comunicação usando Bluetooth foi construída baseado nos exemplos apresentados em:

Vetor de Sensores e Determinação do Erro

A primeira versão do Seguidor de Linha utilizava um vetor com sete sensores para seguir a linha e determinar o erro do robô em relação a linha.

Dependendo da posição do vetor sobre a linha, apenas um ou dois sensores podem reconhecer a linha ao mesmo tempo, como mostra as figuras abaixo [1]:

Apenas sensor central (s3) reconhece a linha.

Sensor central (s3) e sensor (s4) reconhecem a linha.
Possibilidades para o vetor de sensores
Quando o sensor central está sobre a linha o erro é zero.
Quando o carrinho deriva para esquerda, sensibilizando os sensores a direita do ponto central, o erro é positivo. Quando deriva para direita, sensibilizando os sensores a esquerda do ponto central, o erro é negativo.
  Sensores
0 1 2 3 4 5 6  
-------------
1 0 0 0 0 0 0  --> Erro -6
1 1 0 0 0 0 0  --> Erro -5
0 1 0 0 0 0 0  --> Erro -4
0 1 1 0 0 0 0  --> Erro -3
0 0 1 0 0 0 0  --> Erro -2
0 0 1 1 0 0 0  --> Erro -1
0 0 0 1 0 0 0  --> Erro  0
0 0 0 1 1 0 0  --> Erro  1
0 0 0 0 1 0 0  --> Erro  2
0 0 0 0 1 1 0  --> Erro  3
0 0 0 0 0 1 0  --> Erro  4
0 0 0 0 0 1 1  --> Erro  5
0 0 0 0 0 0 1  --> Erro  6

Materiais sobre Seguidor de Linha com controle PID

Projetos
Artigos e TCCs

Referências


--Evandro.cantu (discussão) 08h58min de 16 de maio de 2018 (BRT)