Turma: Licenciatura em Física

Período: 1º

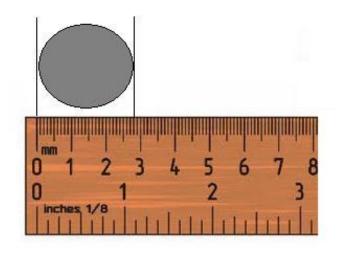
Disciplina: Introdução à Física Experimental

Prof^a Marcia Saito

Lista de revisão para a prova

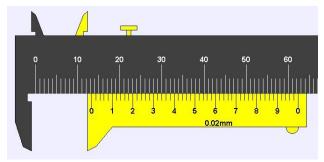
I) Leitura de equipamentos

1) Fazer a leitura dos seguintes instrumentos:



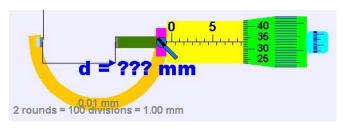
Régua

$$D = (28,0 \pm 0,5) mm$$



Paquímetro

$$D = (13,34 \pm 0,02)$$
 mm



Micrômetro

$$D = (8,830 \pm 0,005) mm$$

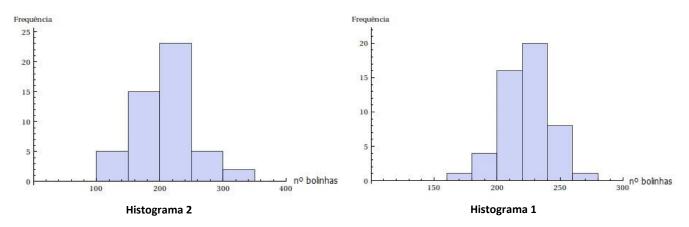
II) Medidas em Física

- 2) Explique o que é uma medida e o que significa medir um objeto.
 - R: Medir significa comparar um objeto que se quer medir, com um padrão adotado como referência.
- 3) Explique o que é uma unidade de medida e a importância de se adotar unidades de medidas padronizadas.
 - R: Unidade de medida é um padrão que se adota como referência de comparação. É importante que as unidades de medidas sejam padronizadas para que se possa comparar diferentes resultados obtidos.

- 4) Uma medida corresponde ao valor verdadeiro de uma grandeza? Por quê? R: Não, nunca. Pois sempre haverá uma incerteza atrelada a essa medida.
- Cite pelo menos 5 fatores que podem influenciar uma medida.
 R: Habilidade do medidor, precisão o equipamento, condições do ambiente, equipamento adequado para a grandeza a ser medida, aproximações teóricas.

III) Histogramas

6) Em um experimento comparando chutes e estimativas, no qual um grupo de estudantes chutou e estimou o número de bolinhas de gude dentro de um recipiente, foram construídos os histogramas a seguir. Responda:



- a) Qual o número total de medidas realizadas em cada caso? Indique as operações matemáticas realizadas para a obtenção do resultado.
 - R: Histograma 1 = 50 medidas; Histograma 2 = 50 medidas.
- b) Qual histograma provavelmente representa os resultados obtidos através das estimativas? Justifique.
 - R: O histograma 1, pois o intervalo do número de bolinhas chutadas foi menor e a largura de cada coluna também é menor.
- c) Qual o número mais provável de bolinhas que existe dentro do recipiente, obtido através da leitura do histograma 1? Justifique.
 - R: 230 bolinhas, pois é o meio da coluna mais alta.
- d) Qual o valor máximo e qual o valor mínimo do número de bolinhas obtido pelos alunos no histograma 1? Então, qual seria a incerteza do número mais provável de bolinhas dentro do recipiente de acordo com o histograma 1? Justifique.
 - R: nmax =280; nmin=160; incerteza=60.
- e) Represente o número de bolinhas obtidos de acordo com o histograma 1, com a sua respectiva incerteza e o número de algarismos significativos ajustados.

 $n = (230 \pm 60)$

- f) Qual o número mais provável de bolinhas que existe dentro do recipiente, obtido através da leitura do histograma 2? Justifique.
 - R: 230.
- g) Qual o valor máximo e qual o valor mínimo do número de bolinhas obtido pelos alunos no histograma 2? Então, qual seria a incerteza do número mais provável de bolinhas dentro do recipiente de acordo com o histograma 1? Justifique.

R: nmax=350; nmin=100.

h) Represente o número de bolinhas obtidos de acordo com o histograma 2, com a sua respectiva incerteza e o número de algarismos significativos ajustados.

IV) Média, desvio padrão, desvio padrão da média, incerteza final e propagação de incertezas

7) Um grupo de estudantes mediu o diâmetro de uma esfera 10 vezes com um paquímetro analógico de precisão de 0,02mm. Os resultados obtidos são apresentados na Tabela 1.

Tabela 1: Medidas da esfera.

	D (mm)
1	15,60
2	18,64
3	19,42
4	15,94
5	16,00
6	16,12
7	17,14
8	16,14
9	18,02
10	15,84
Média	16,886
Desvio padrão	1,350688713
Desvio padrão da média	0,427125274
Incerteza final de D	0,427593265

- a) Complete a tabela com a média, o desvio padrão, o desvio padrão da média e a incerteza final do diâmetro da esfera D.
- b) Represente o diâmetro da esfera, com a sua respectiva incerteza e o número de algarismos significativos ajustados.

$$D = (16,89 \pm 0,43) \text{ mm}$$

 c) Com o resultado obtido, calcule o volume da esfera. Apresente o valor obtido abaixo, com a sua respectiva unidade, sem o ajuste de algarismos significativos.
 V= 2521,035592 mm³

- d) Calcule a incerteza do volume, através da propagação dos erros. Apresente o valor obtido abaixo, com a sua respectiva unidade, sem o ajuste de algarismos significativos. $\sigma_V=191,5156649~{\rm mm}^3$
- e) Apresente o volume da esfera obtido, com a sua respectiva incerteza e o número de algarismos significativos ajustados.

$$V = (2520 \pm 190) \text{ mm}^3$$

f) Converta o resultado obtido para a unidade de volume do Sistema Internacional de Unidades (SI).

$$V = (2,52 \pm 0,19).10^{-6} \text{ m}^3$$

g) Sabendo que a massa da esfera medida pelos estudantes foi de m=(0,00825±0,00001)kg. Calcule a densidade da esfera e a sua incerteza, através da propagação dos erros. Apresente o valor obtido abaixo, com a sua respectiva unidade, com o ajuste de algarismos significativos.

$$d = (3270 \pm 250) kg/m^3$$

h) Sabendo que a esfera era de vidro. Compare a densidade obtida com a densidade teórica do vidro (d_{teo} = 2500 kg/m³), através do E%. E%= 31%

i) Discuta se o valor obtido foi compatível com o valor teórico.

V) Gráficos e determinação dos coeficientes angular e linear

8) Em uma experiência sobre a Lei de Hooke, um grupo de alunos pendurou várias massas numa mola presa a um suporte, obtendo os dados da Tabela 2.

Tabela 2: Dados obtidos para calibração de uma mola.

P±σP (gf)	Δx±σ Δx (cm)
100,3±0,1	14,00±0,05
149,2±0,1	22,50±0,05
198,7±0,1	31,05±0,05
247,6±0,1	40,00±0,05
299,4±0,1	45,00±0,05
349,3±0,1	60,15±0,05

- a) Construa o gráfico do peso em função da deformação da mola para essas medidas e trace a reta média associada;
- b) No mesmo gráfico trace as retas máxima e mínima que também poderia representar os dados obtidos;
- c) A partir das retas traçadas, obtenha os coeficientes $k_{m\'edio}$, $k_{m\'ax}$ e k_{min} .
- d) Apresente o valor obtido, com a sua respectiva unidade e os algarismos significativos ajustados.

$$k = ($$
 \pm $)gf/cm$

VI) Linearização

9) Em um estudo do pêndulo, um grupo de estudantes construiu pêndulos de diferentes comprimentos e mediu 3 vezes o tempo referente a 10 períodos de oscilação, obtendo os dados da Tabela 3.

L (10 ⁻³ m)	10 T ₁ (s)	10 T ₂ (s)	10 T ₃ (s)	10 T _{medio} (s)	T (s)	T^2 (s ²)
104,5±0,5	7,31	7,13	7,31			
152,3±0,5	8,62	8,63	8,5			
203,0±0,5	9,56	10,16	9,00			
252,6±0,5	11,06	10,65	10,31			
305,0±0,5	11,43	11,75	11,56			

- a) Complete a Tabela 3 com os dados da média de 10T, de T e T².
- b) Sabendo que a função que descreve o período de oscilação do pêndulo é $T=2\pi\sqrt{\frac{L}{g'}}$, linearize a função a fim de poder representar esses dados em um gráfico linear. Qual é a função linearizada? Qual é o coeficiente angular dessa função?
- c) Como obter a aceleração da gravidade a partir do coeficiente angular?
- d) A partir disso, trace o gráfico do comprimento do pêndulo em função do período de oscilação ao quadrado (LxT²).
- e) No mesmo gráfico trace as retas máxima e mínima que também poderia representar os dados obtidos;
- f) A partir das retas traçadas, obtenha os coeficientes $a_{m\'edio}$, $a_{m\'ax}$ e a_{min} .
- g) Apresente o valor obtido, com a sua respectiva unidade e os algarismos significativos ajustados.

$$a = (\pm)m/s^2$$

h) A partir do coeficiente angular obtido, calcule a aceleração da gravidade g, com sua respectiva incerteza propagada. Apresente o valor obtido, com a sua respectiva unidade e os algarismos significativos ajustados.

$$g = ($$
 \pm $)m/s2$

i) Compare o valor obtido com a aceleração da gravidade teórica (g_{teo} = 9,78 m/s²), através do E%.

j) Discuta se o valor obtido foi compatível com o valor teórico.

Formulário

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

$$\sigma = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}}$$

$$\sigma_m = \frac{\sigma}{\sqrt{n}}$$

$$\sigma_{final}^2 = \sigma_m^2 + \sigma_{inst}^2$$

$$V_{esfera} = \frac{\pi D^3}{6}$$

$$\sigma_{Vesfera} = \left(\frac{\pi}{2}D^2\right)\sigma_D$$

$$\mathrm{d} = \frac{m}{V}$$

$$\sigma_d = \sqrt{\left(\frac{1}{V}\right)^2 \sigma_m^2 + \left(\frac{m}{V^2}\right)^2 \sigma_V^2}$$

$$E(\%) = \left| \frac{valor_{teo} - valor_{exp}}{valor_{teo}} \right|.100$$

$$P = k.\Delta x$$

$$a = tg\theta = \frac{cat.\,op.}{cat.\,adj.}$$