Problems

SETS AND SUBSETS

- **1.2** List the elements of each set where $N = \{1, 2, 3, ...\}$.
 - (a) $A = \{x \in \mathbb{N} \mid 3 < x < 9\}$
 - (b) $B = \{x \in \mathbb{N} \mid x \text{ is even, } x < 11\}$

(c)
$$C = \{x \in \mathbb{N} \mid 4 + x = 3\}$$

- **1.3** Let $A = \{2, 3, 4, 5\}$.
 - (a) Show that A is not a subset of $B = \{x \in \mathbb{N} \mid x \text{ is even}\}.$
 - (b) Show that A is a proper subset of $C = \{1, 2, 3, ..., 8, 9\}$.

SET OPERATIONS

1.4 Let $U = \{1, 2, ..., 9\}$ be the universal set, and let

$$A = \{1, 2, 3, 4, 5\}, C = \{5, 6, 7, 8, 9\}, E = \{2, 4, 6, 8\},$$

 $B = \{4, 5, 6, 7\}, D = \{1, 3, 5, 7, 9\}, F = \{1, 5, 9\}.$

Find: (a) $A \cup B$ and $A \cap B$; (b) $A \cup C$ and $A \cap C$; (c) $D \cup F$ and $D \cap F$.

Recall that the union $X \cup Y$ consists of those elements in either X or Y (or both), and that the intersection $X \cap Y$ consists of those elements in both X and Y.

- **1.5** Consider the sets in the preceding Problem 1.4. Find:
 - (a) $A^{\mathbb{C}}$, $B^{\mathbb{C}}$, $D^{\mathbb{C}}$, $E^{\mathbb{C}}$; (b) $A \setminus B$, $B \setminus A$, $D \setminus E$; (c) $A \oplus B$, $C \oplus D$, $E \oplus F$.

Recall that:

- (1) The complements $X^{\mathbb{C}}$ consists of those elements in **U** which do not belong to X.
- (2) The difference $X \setminus Y$ consists of the elements in X which do not belong to Y.
- (3) The symmetric difference $X \oplus Y$ consists of the elements in X or in Y but not in both.
- **1.6** Show that we can have: (a) $A \cap B = A \cap C$ without B = C; (b) $A \cup B = A \cup C$ without B = C.

VENN DIAGRAMS

1.13 Determine the validity of the following argument:

 S_1 : All my friends are musicians.

S2: John is my friend.

S₃: None of my neighbors are musicians.

S: John is not my neighbor.

1.15 In a survey of 120 people, it was found that:

65 read *Newsweek* magazine, 20 read both *Newsweek* and *Time*, 45 read *Time*, 25 read both *Newsweek* and *Fortune*,

42 read *Fortune*, 15 read both *Time* and *Fortune*,

8 read all three magazines.

- (a) Find the number of people who read at least one of the three magazines.
- (b) Fill in the correct number of people in each of the eight regions of the Venn diagram in Fig. 1-9(a) where N, T, and F denote the set of people who read Newsweek, Time, and Fortune, respectively.
- (c) Find the number of people who read exactly one magazine.

Supplementary Problems

SETS AND SUBSETS

1.26 Which of the following sets are equal?

$$A = \{x \mid x^2 - 4x + 3 = 0\}, \quad C = \{x \mid x \in \mathbf{N}, x < 3\}, \qquad E = \{1, 2\}, \quad G = \{3, 1\}, \\ B = \{x \mid x^2 - 3x + 2 = 0\}, \quad D = \{x \mid x \in \mathbf{N}, x \text{ is odd, } x < 5\}, \quad F = \{1, 2, 1\}, \quad H = \{1, 1, 3\}.$$

1.27 List the elements of the following sets if the universal set is $U = \{a, b, c, ..., y, z\}$.

Furthermore, identify which of the sets, if any, are equal.

 $A = \{x \mid x \text{ is a vowel}\},$ $C = \{x \mid x \text{ precedes } f \text{ in the alphabet}\},$ $B = \{x \mid x \text{ is a letter in the word "little"}\},$ $D = \{x \mid x \text{ is a letter in the word "title"}\}.$

1.28 Let $A = \{1, 2, ..., 8, 9\}$, $B = \{2, 4, 6, 8\}$, $C = \{1, 3, 5, 7, 9\}$, $D = \{3, 4, 5\}$, $E = \{3, 5\}$. Which of the these sets can equal a set X under each of the following conditions?

- (a) X and B are disjoint. (c) $X \subseteq A$ but $X \not\subset C$.
- (b) $X \subseteq D$ but $X \not\subset B$. (d) $X \subseteq C$ but $X \not\subset A$.

VENN DIAGRAMS

- **1.34** The Venn diagram in Fig. 1-5(a) shows sets A, B, C. Shade the following sets:
 - (a) $A \setminus (B \cup C)$; (b) $A^{\mathbb{C}} \cap (B \cup C)$; (c) $A^{\mathbb{C}} \cap (C \setminus B)$.

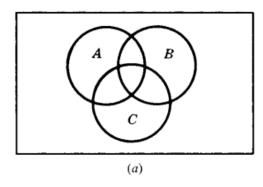


Fig. 1-5

- **1.36** Consider the following assumptions:
 - S_1 : All dictionaries are useful.
 - S₂: Mary owns only romance novels.
 - S₃: No romance novel is useful.

Use a Venn diagram to determine the validity of each of the following conclusions:

- (a) Romance novels are not dictionaries.
- (b) Mary does not own a dictionary.
- (c) All useful books are dictionaries.

ALGEBRA OF SETS AND DUALITY

- **1.38** Use the laws in Table 1-1 to prove each set identity:
 - (a) $(A \cap B) \cup (A \cap B^{\mathbb{C}}) = A$
 - (b) $A \cup B = (A \cap B^{\mathbb{C}}) \cup (A^{\mathbb{C}} \cap B) \cup (A \cap B)$

Table 1-1 Laws of the algebra of sets

Tuble 1.1 Laws of the digebra of sets		
Idempotent laws:	$(1a) A \cup A = A$	$(1b) A \cap A = A$
Associative laws:	$(2a) (A \cup B) \cup C = A \cup (B \cup C)$	$(2b) (A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws:	$(3a) A \cup B = B \cup A$	$(3b) A \cap B = B \cap A$
Distributive laws:	$(4a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$(4b) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws:	$(5a) A \cup \emptyset = A$	$(5b) A \cap \mathbf{U} = A$
	$(6a) A \cup \mathbf{U} = \mathbf{U}$	$(6b) A \cap \emptyset = \emptyset$
Involution laws:	$(7) (A^{\mathcal{C}})^{\mathcal{C}} = A$	
Complement laws:	$(8a) A \cup A^{C} = \mathbf{U}$	$(8b) A \cap A^{C} = \emptyset$
	$(9a) \mathbf{U}^{\mathbf{C}} = \emptyset$	$(9b) \varnothing^{\mathbf{C}} = \mathbf{U}$
DeMorgan's laws:	$(10a) (A \cup B)^{\mathcal{C}} = A^{\mathcal{C}} \cap B^{\mathcal{C}}$	$(10b) (A \cap B)^{\mathcal{C}} = A^{\mathcal{C}} \cup B^{\mathcal{C}}$

FINITE SETS AND THE COUNTING PRINCIPLE

- **1.39** Determine which of the following sets are finite:
 - (a) Lines parallel to the x axis.
- (c) Integers which are multiples of 5.
- (b) Letters in the English alphabet. (d) Animals living on the earth.
- 1.41 A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three popular options, air-conditioning (A), radio (R), and power windows (W), were already installed. The survey found:

15 had air-conditioning (A), 5 had A and P,

12 had radio (R), 9 had A and R, 3 had all three options.

11 had power windows (W), 4 had R and W,

Find the number of cars that had: (a) only W; (b) only A; (c) only R; (d) R and W but not A; (e) A and R but not W (f) only one of the options; (g) at least one option; (h) none of the options.