INTRODUÇÃO: PRINCÍPIOS BÁSICOS DE CONTAGEM

Princípio da regra da soma: Suponha que algum evento E pode ocorrer de m maneiras e que um segundo evento F pode ocorrer de n maneiras, e suponha que ambos os eventos não podem ocorrer simultaneamente. Então, E ou F podem ocorrer de m+n maneiras. Mais genericamente, suponha que um evento E_1 pode ocorrer de n_1 maneiras, um segundo evento E_2 pode ocorrer de n_2 maneiras, e que um terceiro evento E_3 pode ocorrer de n_3 maneiras, ..., e suponha que dois eventos não podem ocorrer ao mesmo tempo. Então, algum dos eventos pode ocorrer de $n_1 + n_2 + n_3 + ...$, maneiras.

Princípio da regra do produto: Suponha que existe um evento E que pode ocorrer de m maneiras e, independentemente deste evento, que existe um segundo evento F que pode ocorrer de n maneiras. As combinações de E e F ocorrem de mn maneiras. Mais genericamente, suponha que um evento E_1 pode ocorrer de n_1 maneiras, e, seguindo E_1 , um segundo evento E_2 pode ocorrer de n_2 maneiras, e, seguindo E_2 , um terceiro evento E_3 pode ocorrer de n_3 maneiras, e assim por diante. Então, todos os eventos podem ocorrer, na ordem indicada, de $n_1 \cdot n_2 \cdot n_3 \cdot \cdot \cdot$ maneiras.

Princípio da regra da soma: se A e B são conjuntos disjuntos, então:

$$n(A \cup B) = n(A) + n(B)$$

(2) Princípio da regra do produto: seja A × B o produto cartesiano dos conjuntos A e B. Então:

$$n(A \times B) = n(A) \cdot n(B)$$

NOTAÇÃO FATORIAL

O produto dos inteiros positivos de 1 até n, inclusive, é denotado por n! (lê-se "n fatorial"):

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-2)(n-1)n$$

Em outras palavras, n! é definido por:

$$1! = 1$$
 e $n! = n \cdot (n-1)!$

Também é conveniente definir 0! = 1.

PERMUTAÇÕES

Qualquer arranjo de um conjunto de n objetos numa ordem dada é dito uma permutação dos objetos (usando todos a cada vez). Qualquer arranjo de $r \le n$ desses objetos em uma ordem dada é dito uma r-permutação ou uma permutação de n objetos (tomando r a cada vez.). Considere, por exemplo, o conjunto de letras a, b, c e d. Então:

- bdca, dcba e acdb são permutações das quatro letras tomando todas a cada vez.
- (ii) bad, adb, cbd e bca são permutações das quatro letras tomando três a cada vez.
- (iii) ad, cb, da e bd são permutações das quatro letras tomadas duas a cada vez.

O número de permutações de n objetos, tomando r a cada vez, é denotado por

$$P(n,r)$$
, ${}_{n}P_{r}$, $P_{n,r}$, P_{r}^{n} ou (n) ,

Usaremos P(n, r). Antes de deduzirmos a fórmula geral para P(n, r), consideramos um caso particular.

Teorema 6-2:
$$P(n,r) = \frac{n!}{(n-r)!}$$
.

No caso especial em que r = n, temos

$$P(n,n) = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1 = n!$$

Corolário 6-3: existem n! permutações de n objetos (tomando todos a cada vez).

Por exemplo, existem $3! = 1 \cdot 2 \cdot 3 = 6$ permutações das três letras $a, b \in c$. São elas, $abc, acb, bac, bca \in cab, cba$.

Teorema 6-4:
$$P(n; n_1, n_2, ..., n_r) = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Demonstramos o teorema acima com um exemplo particular. Suponha que queiramos formar todas as possíveis "palavras" de cinco letras usando as letras da palavra "BABBY". Existem 5! = 120 permutações dos objetos B₁, A, B₂, B₃, Y, onde os três Bs são distintos. Observe que as seis permutações seguintes

$$B_1B_2B_3AY$$
, $B_2B_1B_3AY$, $B_3B_1B_2AY$, $B_1B_3B_2AY$, $B_2B_3B_1AY$, $B_3B_2B_1AY$,

produzem a mesma palavra quando os índices são removidos. O 6 vem do fato de que existem $3! = 3 \cdot 2 \cdot 1 = 6$ maneiras diferentes de posicionar os três Bs nas três primeiras posições da permutação. Isto é verdade para cada conjunto de três posições nas quais os Bs podem aparecer. Consequentemente, existem

$$P(5;3) = \frac{5!}{3!} = \frac{120}{6} = 20$$

COMBINAÇÕES

Suponha que tenhamos um conjunto de n objetos. Uma combinação desses n objetos à taxa r é uma seleção de r objetos cuja ordem não importa. Em outras palavras, uma r-combinação de um conjunto de n objetos é qualquer subconjunto de r elementos. Por exemplo, as combinações das letras a, b, c e d à taxa três são:

$$\{a,b,c\}$$
, $\{a,b,d\}$, $\{a,c,d\}$, $\{b,c,d\}$ ou simplemente abc , abd , acd , bcd

Observe que as seguintes combinações são iguais:

abc, acb, bac, bca, cab e cba

Isto é, cada uma delas denota o mesmo conjunto $\{a, b, c\}$.

Exemplo 6.7 Ache o número de combinações de quatro objetos a, b, c e d à taxa 3.

Combinação	Permutações
abc	abc, acb, bac, bca, cab, cba
abd	abd, adb, bad, bda, dab, dba
acd	acd, adc, cad, cda, dac, dca
bcd	bcd, bdc, cbd, cdb, dbc, dcb

Teorema 6-5: $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$

(a) Quantos comitês de três podem ser formados com oito pessoas?

(b) Um fazendeiro compra três vacas, dois porcos e quatro galinhas de um homem que tem seis vacas, cinco porcos e oito galinhas. Quantas escolhas tem o fazendeiro?

$$\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} \cdot \frac{5 \cdot 4}{1 \cdot 2} \cdot \frac{8 \cdot 7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4} = 20 \cdot 10 \cdot 70 = 14.000 \text{ maneiras.}$$