
Aplicação de Integral-Trabalho

6.4 Exercícios

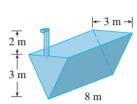
- Um gorila de 360 lb escala uma árvore a uma altura de 20 pés. Encontre o trabalho realizado pelo gorila para alcançar esta altura em

 (a) 10 segundos
 (b) 5 segundos
- 2. Quanto trabalho é realizado quando um guindaste levanta uma pedra de 200 kg a uma altura de 3 m?
- 3. Uma partícula é movida ao longo do eixo x por uma força que mede 10/(1 + x)² libras em um ponto a x e pés da origem. Calcule o trabalho realizado ao mover a partícula da origem até a distância de 9 pés.
- 4. Quando uma partícula está localizada a uma distância de x metros da origem, uma força de cos(πx/3) newtons atua sobre ela. Quanto trabalho é realizado ao mover a partícula de x = 1 até x = 2? Interprete a sua resposta considerando o trabalho realizado de x = 1 para x = 1,5 e de x = 1,5 para x = 2.
- 5. A figura a seguir mostra o gráfico de uma função força (em newtons) que cresce até seu máximo valor e depois permanece constante. Quanto trabalho é realizado pela força ao mover um objeto a uma distância de 8 m?

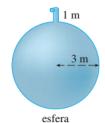
6. A tabela a seguir mostra valores de uma função de força f(x), onde x é medido em metros e f(x), em newtons. Use a Regra do Ponto Médio para estimar o trabalho realizado pela força ao mover um objeto de x = 4 até x = 20.

x	4	6	8	10	12	14	16	18	20
f(x)	5	5,8	7,0	8,8	9,6	8,2	6,7	5,2	4,1

- 7. Uma força de 10 lb é necessária para manter uma mola esticada 4 pol além do seu comprimento natural. Quanto trabalho é realizado para esticá-la do seu comprimento natural até 6 pol além do seu tamanho natural?
- **8.** Uma mola tem comprimento natural de 20 cm. Se uma força de 25 N é necessária para mantê-la esticada a um comprimento de

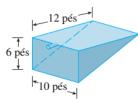

- 30 cm, qual o trabalho necessário para esticá-la de 20 cm a 25 cm?
- Suponha que 2 J de trabalho sejam necessários para esticar uma mola de seu comprimento natural de 30 cm para 42 cm.
 - (a) Quanto trabalho é necessário para esticar a mola de 35 cm para 40 cm?
 - (b) Quão longe de seu comprimento natural uma força de 30 N manterá a mola esticada?
- 10. Se o trabalho necessário para esticar uma mola 1 pé além do seu comprimento natural é de 12 lb-pé, qual o trabalho necessário para esticá-la 9 pol além do seu comprimento natural?
- 11. Uma mola tem comprimento natural de 20 cm. Compare o trabalho W₁ realizado ao esticar a mola de 20 cm para 30 cm com o trabalho W₂ realizado para esticá-la de 30 cm para 40 cm. Como W₂ e W₁ estão relacionados?
- 12. Se 6 J de trabalho são necessários para esticar uma mola de 10 cm para 12 cm e um trabalho de 10 J é necessário para esticá-la de 12 cm para 14 cm, qual é o comprimento natural da mola?
- 13–20 Mostre como aproximar o trabalho pedido por uma soma de Riemann. Em seguida, expresse o trabalho como uma integral e calcule-a
- 13. Uma corda pesada, com 50 pés de comprimento, pesa 0,5 lb-pé e está pendurada sobre a borda de um edifício com 120 pés de altura.
 - (a) Qual o trabalho necessário para puxar a corda até o topo do edifício?
 - (b) Qual o trabalho necessário para puxar metade da corda até o topo do edifício?
- 14. Uma corrente estendida no chão tem 10 m de comprimento e sua massa é 80 kg. Qual a quantidade de trabalho necessária para levantar uma extremidade da corrente a uma altura de 6 m?
- 15. Um cabo que pesa 2 lb/pés é utilizado para erguer 800 lb de carvão em uma mina com profundidade de 500 pés. Encontre o trabalho realizado.
- 16. Um balde que pesa 4 lb e uma corda de massa desprezível são usados para tirar água de um poço com 80 pés de profundidade. O balde é enchido com 40 lb de água e é puxado a uma velocidade de 2 pés/s, mas a água vaza por um buraco no balde a uma taxa

de 0,2 lb/s. Encontre o trabalho realizado para puxar o balde até o topo do poço.

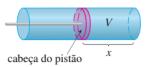

- 17. Um balde de 10 kg, furado, é levantado do chão até uma altura de 12 m a uma velocidade constante, por uma corda que pesa 0,8 kg/m. Inicialmente o balde contém 36 kg de água, mas a água vaza a uma taxa constante e o balde acaba vazio exatamente quando atinge a altura de 12 m. Quanto trabalho foi realizado?
- 18. Uma corrente de 10 pés pesa 25 lb e está pendurada no teto. Encontre o trabalho necessário para levantar a extremidade inferior da corrente até o teto, de modo que ela se junte com a extremidade superior.
- 19. Um aquário de 2 m de comprimento, 1 m de largura e 1 m de profundidade está cheio de água. Encontre o trabalho necessário para bombear metade da água para fora do aquário. (Use o fato de que a densidade da água é 1 000 kg/m³.)
- 20. Uma piscina circular tem um diâmetro de 10 m, os lados têm 1,5 m de altura e a profundidade da água é de 1,2 m. Quanto trabalho é necessário para bombear toda a água pelo lado da piscina?

21–24 Um tanque está cheio de água. Encontre o trabalho necessário para bombear a água pela saída. Nos Exercícios 23 e 24 use a densidade da água igual a 62,5 lb/pé³.

21.


22.

23.



24.

- ➡ 25. Suponha que para o tanque do Exercício 21, a bomba quebre depois de o trabalho de 4,7 × 10⁵ J ter sido realizado. Qual é a profundidade da água remanescente no tanque?
 - **26.** Resolva o Exercício 22 se o tanque estiver cheio até a metade de óleo, que tem densidade de 900 kg/m³.
 - 27. Quando um gás se expande em um cilindro de raio r, a pressão em um dado momento é uma função do volume: P = P(V). A força exercida pelo gás no pistão (veja a figura) é o produto da pressão pela área: $F = \pi r^2 P$. Mostre que o trabalho realizado pelo gás quando o volume se expande a partir de V_1 para V_2 é

$$W = \int_{V_1}^{V_2} P \, dV$$

- **28.** Em uma máquina a vapor a pressão P e o volume V de vapor satisfazem a equação $PV^{1,4} = k$, onde k é uma constante. (Isto é verdade para a expansão adiabática, isto é, a expansão na qual não há transferência de calor entre o cilindro e os seus arredores.) Use o Exercício 27 para calcular o trabalho realizado pelo motor, durante um ciclo em que o vapor começa a uma pressão de 160 lb/pol² e um volume de 100 pol³ e expande-se para um volume de 800 pol³.
- **29.** (a) A Lei da Gravitação de Newton afirma que dois corpos com massas m_1 e m_2 atraem um ao outro com uma força

$$F = G \frac{m_1 m_2}{r^2}$$

Onde r é a distância entre os corpos e G é a constante gravitacional. Se um dos corpos está fixo, encontre o trabalho necessário para mover o outro a partir de r=a até r=b.

- (b) Calcule o trabalho necessário para lançar verticalmente um satélite de 1.000 kg a uma altura de 1.000 km. Você pode supor que a massa da Terra é 5.98×10^{24} kg e está concentrada no seu centro. Use o raio da Terra igual a 6.37×10^6 m e G = 6.67×10^{-11} N. m/kg².
- 30. A Grande Pirâmide do Faraó Quéops foi construída em calcário no Egito ao longo de um período de tempo de 20 anos de 2580 a.C. a 2560 a.C. Sua base é quadrangular com comprimento de lado de 756 pés; sua altura quando foi construída era de 481 pés. (Foi considerada a estrutura feita pelo homem mais alta do mundo por mais de 3.800 anos.) A densidade do calcário é de aproximadamente 150 lb/ pé³.
 - (a) Calcule o trabalho total realizado na construção da pirâmide.
 - (b) Se cada operário trabalhou 10 horas por dia durante 20 anos, em 340 dias por ano, e fez 200 pés-lb/h de trabalho ao colocar blocos de calcário no lugar, quantos trabalhadores foram necessários em média para construir a pirâmide?

Korostyshevskiy/Shutterstock