Tabela Verdade, Tautologia, Contradição e Contingência

Uma fórmula A é chamada de <u>CONTRADIÇÃO</u> se para qualquer valor de verdade de seus atomos a fórmula sempre assume valor F (Falso).

Uma fórmula P é chamada de <u>TAUTOLOGIA</u> se para qualquer valor de verdade de seus átomos a fórmula sempre assume valor V (Verdadeiro).

Uma fórmula Q é chamada de <u>CONTINGÊNCIA</u> se para algum valor de verdade de seus átomos a fórmula assume valor V (Verdadeiro) e para algum valor de verdade de seus átomos a fórmula assume valor de verdade F (Falso)

Se uma fórmula A é <u>TAUTOLOGIA</u> então ~A é CONTRADIÇÃO.

Se A é CONTRADIÇÃO então ~A é TAUTOLOGIA.

Por serem sempre verdadeiras – logicamente verdadeiras – as tautologias são aquelas fórmulas a que se costuma dar o nome de LEIS LÓGICAS

A fórmula p v ¬p é uma tautologia. (Terceiro Excluído)

р	¬р	p v ¬p	
V	F	V	
F	V	V	

A fórmula p ∧ ¬p é uma contradição.

р	¬р	p ∧ ¬p	
V	F	F	
F	V	F	

Comutativa	$(p \land q) \leftrightarrow (q \land p)$	$(p \lor q) \leftrightarrow (q \lor p)$		
Associativa	$((p \land q) \land r) \leftrightarrow (p \land (q \land r))$	$((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r))$		
Idempotente	$(p \land p) \leftrightarrow p$	$(p \lor p) \leftrightarrow p$		
Propriedades de V	$(p \land V) \leftrightarrow p$	$(p \lor V) \leftrightarrow V$		
Propriedades de F	$(p \land F) \leftrightarrow F$	$(p \lor F) \leftrightarrow p$		
Absorção	$(p \land (p \lor r)) \leftrightarrow p$	$(p \lor (p \land r)) \leftrightarrow p$		
Distributivas	$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$	$(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$		
Distributivas	$(p \rightarrow (q \land r)) \leftrightarrow ((p \rightarrow q) \land (p \rightarrow r))$	$(p \rightarrow (q \lor r)) \leftrightarrow ((p \rightarrow q) \lor (p \rightarrow r))$		
Leis de De Morgan	$\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$	$\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$		
Def. implicação	$(p \rightarrow q) \leftrightarrow (^p \lor q)$	$(p \rightarrow q) \leftrightarrow \sim (p \land \sim q)$		
Def. bicondicional	$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))$	$(p \leftrightarrow q) \leftrightarrow ((^p \lor q) \land (^q \lor p))$		
Negação	~ (~ p) ↔ p			
Contraposição	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$			
Exportação(⇒)	Importação (⇐)	$((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$		
Troca de Premissas $(p \rightarrow (q \rightarrow r)) \leftrightarrow (q \rightarrow (p \rightarrow r))$				

Modus ponens	$(p \land (p \rightarrow q)) \rightarrow q$	
Modus tollens	$((^{\sim}p \land (q \rightarrow p)) \rightarrow ^{\sim}q$	
Silogismo disjuntivo	$((p \lor q) \land ^{\sim} p) \rightarrow q$	
Silogismo hipotético	$((p\rightarrow q) \land (q\rightarrow r)) \rightarrow (p\rightarrow r)$	
Lei de Peirce	$((p \rightarrow q) \rightarrow p) \rightarrow p$	
Lei de Duns Scot	$^{\sim}p \rightarrow (p \rightarrow q)$	
Prefixação	$p \rightarrow (q \rightarrow p)$	
Antilogismo	$((q \land r) \rightarrow p) \leftrightarrow ((q \land p) \rightarrow r)$	

Equivalência de Fórmulas e as Tabelas Verdade

_Uma fórmula P é logicamente equivalente a uma fórmula Q se, e somente se, P ↔ Q é uma tautologia.

Notação: P ⇔ Q ou P ≡ Q.

Exemplo: $p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$

р	q	p→q	~p	~q	~q->~p	(p→q)↔(~q→~p)
V	V	V	F	F	V	V
V	F	F	F	V	F	V
F	V	V	V	F	V	V
F	F	V	V	V	V	V

Propriedades da equivalência lógica

Propriedade Reflexiva: A⇔A.

Propriedade Simétrica: Se A ⇔ B então B ⇔ A.

Propriedade Transitiva: Se $A \Leftrightarrow B \in B \Leftrightarrow C$ então $A \Leftrightarrow C$.

Se A e B são ambas tautologias ou contradições então A⇔B.

Uma fórmula proposicional A implica logicamente uma fórmula proposicional B see A→B é uma tautologia. Denotamos isto por A⇒B.

Propriedades da implicação lógica

Propriedade Reflexiva: A⇒A.

Propriedade Antissimétrica: Se $A \Rightarrow B$ e $B \Rightarrow A$ então $A \Leftrightarrow B$.

Propriedade Transitiva: Se $A \Rightarrow B \in B \Rightarrow C$ então $A \Rightarrow C$.

Proposições associadas a uma condicional (→)

Dada a condicional A→B, as seguintes fórmulas proposicionais são associadas a ela:

- (i) Recíproca $B \rightarrow A$.
- (ii) Contrária ~A → ~B
- (iii) Recíproca da contrária ou Contrapositiva ~B → ~A

Algumas equivalências lógicas importantes

Sejam P e Q fórmulas proposicionais quaisquer. Então, são logicamente equivalentes às seguintes fórmulas proposicionais:

$$P \wedge Q$$
 e $\sim (\sim P \vee \sim Q)$
 $P \vee Q$ e $\sim (\sim P \wedge \sim Q)$
 $P \rightarrow Q$ e $\sim P \vee Q$

Dem.:

Basta mostrarmos que $(P \land Q) \leftrightarrow \sim (\sim P \lor \sim Q), (P \lor Q) \leftrightarrow \sim (\sim P \land \sim Q)$ e $(P \rightarrow Q) \leftrightarrow (\sim P \lor Q)$ são tautologias.