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Abstract
This article focuses on results obtained from two cloud-based models that examine trade-offs between security, scalabil-
ity, and efficiency of data collection for Internet-of-Things sensor networks. This work can provide insight for Internet-
of-Things systems designers in choosing security controls and scalability features when working with cloud services. The
results were obtained from a smart home Internet-of-Things prototype system in which data records from in-home sen-
sors are transmitted wirelessly to an in-home hub, which forwards them to a cloud web service for storage and analysis.
We consider different configurations and security controls on the wireless (in-home) and on the wired (home-to-web)
sides. The configuration on the wireless side includes encrypted or plain-text transmission from the wireless sensors to
the in-home hub for probing if software encryption of sensor data adds appreciable delay to the transmission time. The
configuration on the wired side includes encryption or plain-text transmission, with or without authentication, with or
without scalable cloud services. For each configuration, we measure end-to-end latency, transmission latency, and pro-
cessing latency at the web service. Results of the experiments on the wired side showed much greater latencies and
variability of latencies when using scalable cloud services.
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Introduction to smart homes and the
Internet-of-Things

Smart devices and the Internet-of-Things (IoT) are
increasingly pervading our daily lives shaping and
transforming our experiences with the physical world.
In the home, smart devices add conveniences, comfort,
or safety. They regulate environmental conditions in
the home by tracking our activities to infer our needs
for cooling and heating while optimizing energy con-
sumption. They keep track of our fitness and health
conditions1 or provide new services for controlling and
maintaining devices in the home.2 Market studies

forecast an exponential growth of IoT consumer
devices with more than 13 billion new devices con-
nected to our networks by 2020.3 Those devices may
leverage wireless networks available in a home to
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connect to the Internet and integrate with cloud ser-
vices. This integration enables smart devices to access
software and firmware updates as they become avail-
able, tap into vast cloud computing and data storage
services, or offer automation and remote monitoring
and control for residents of a home.

For smart homes to adapt to user needs and provide
conveniences, comfort, and safety in the home, data
from the smart devices must be shared and integrated
to build a complex model of a home and its residents.
These models can be used to track activities and assess
the resident’s needs and make recommendations or take
actions in situations where an emergency arises. For
example, a smart house that detects a water leak in the
basement while the resident is at work can instantly
notify the resident through text messages while also
shutting off the main water valve of the house to pre-
vent flooding in the home.

With limited data storage and processing capabil-
ities, smart devices normally rely on cloud services to
handle their data. Those services provide the scalability
and reliability to ensure that the smart home is respon-
sive to the resident’s needs. Smart devices either directly
connect to cloud services to upload their data or use a
hub in the home that collects the data from multiple
smart home devices and uploads them to the cloud (see
Figure 1). As devices vary in their needs to communi-
cate with cloud services to send data back and forth,
we can expect a wide range of communication require-
ments for bandwidth and latency.

Studies have shown that smart IoT devices offer min-
imal to no protection from cyberattacks that may com-
promise the device or the data that it stores or transfers
into the cloud.4 Security-related standards and regula-
tions are not well established yet, resulting in numerous
legacy communication protocols which may not provide

ample protection to data privacy. Moreover, the over-
head of such legacy protection for data storage and
transmission is not well understood.

In response to these challenges, as a continuation of
our previous work in Reichherzer et al.,5 we report on
two cloud-based models that examine design alternatives
that provide trade-offs between security, scalability, and
efficiency for IoT networks. The study was performed on
a prototype smart home system using multiple sensors in
a network developed at the University of West Florida.
This sensor network is also utilized in another research
project intended at developing a Smart Independent
Living for Elders (SMILE) home.6

We used this experimental platform for our two
cloud-based models. The first considered different secu-
rity controls for the wireless part of the network on the
left side of Figure 1. The second considered different
controls and designs for the wired part on the right side
of the figure. In both cases, for simplicity of measure-
ments, we consider unidirectional data flow from the
sensor, through the sensor agent and the hub, to the
Web Store which consists of a set of several web ser-
vices with a backend data storage. As our indicator of
efficiency, we use latency, defined as the overall elapsed
time between message generation and receipt. We used
the Network Time Protocol (NTP) to guarantee syn-
chronization among clocks between the different sys-
tem components.

In this article, section ‘‘Smart home/IoT security and
scalability context’’ provides background on the cloud-
based model, specifically the security issues that are
being studied and those not studied. Section ‘‘The
SMILE home system architecture’’ describes the archi-
tecture of the prototype SMILE home system including
the wired and the wireless components in the system
and the web services and data storage facilities on

Figure 1. IoT/SMILE home network overview.
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which it relies. Section ‘‘Related works on IoT network
security’’ describes the related work on IoT security,
while sections ‘‘Wireless network experiment’’ and
‘‘Wired network experiments’’ describe the cloud-based
model for the wireless and wired sections of the system.
Finally, section ‘‘Discussion and conclusion’’ discusses
the experimental results and conclusions of the cloud-
based model.

Smart home/IoT security and scalability
context

The adoption of IoT networks in general, and of smart
home networks, introduces significant security risks. In
this article, we consider design alternatives that address
an important subset of these risks. In the terminology
used by NIST,7 we consider an outsider adversary with
high to very-high capabilities such as an experienced
and well-financed hacker group. Such an adversary
may be seeking to capture valuable data about smart
home occupants or to compromise network compo-
nents for use in denial-of-service (DoS) attacks. The
adversary will have the capability to intercept and inter-
fere with wireless and possibly wired communications
(see Figure 1). However, we exclude from consideration
insider attacks on the producers of IoT components
since they are not addressable by network design but
rather by other means such as a careful selection and
monitoring of personnel. Similarly, we will not consider
physical attacks on the sensors or other devices within
the smart home since these are best addressed by physi-
cal security and by introducing tamper-proof compo-
nents into each device. Finally, we largely exclude
attacks on vulnerabilities in the web service itself or in
the web storage facility since these classes of attack are
not specific to IoT applications. Thus, our focus is on
evaluating design approaches that provide secure com-
munications, both wireless and wired within a home.

We organize our analysis of the different design
approaches around the traditional CIA Information
Security Triad of confidentiality, integrity, and avail-
ability attributes.8 Related to availability is a fourth
attribute of scalability; in many cases, IoT networks
will need to sustain availability as data volume grows,
either gradually as more nodes are added or at extreme
events such as a flood or a strike.

Confidentiality is an essential attribute in almost all
IoT implementations. In a smart home for example,
sensors measuring weight, illumination, or temperature
can divulge living habits of the occupants, affecting
their privacy. Availability and integrity become promi-
nent considerations contingent on the use case. Failures
in monitoring the refrigerator to reorder milk would be
more a nuisance than a disaster. However, if a fall
detector on a resident in an assisted living home is

programmed to call for an emergency ambulance ser-
vice, system availability must permit continued opera-
tion even in DoS attack scenarios while data integrity
ensures defense against spoofing.

The design approaches we used also impact the scal-
ability of the IoT network, but the scalability obliga-
tions depend significantly on the IoT application. If the
smart homes are located within a single gated commu-
nity, the associated volume of data can be anticipated.
However, smart-city-wide IoT applications must be
able to handle huge and flexible data volumes with
great reliability. Such challenges can be better addressed
through cloud infrastructures.

The SMILE home system architecture

The design alternatives we evaluate in this article were
implemented within the general IoT network architec-
ture called ‘‘Smart Independent Living for Elders’’ that
is shown in overview in Figure 1. An important design
criterion for this architecture is the ability to update
after deployment. A smart home must be able to incor-
porate new sensors and technology without disruption.
Changes to the sensor hardware that enhance system
performance and reliability must disrupt the system’s
response, data collection, or processing. Similarly, for
the software, bug or security fixes or needed upgrades
must be installable without disruption.

Another important design criterion is that significant
computation capacity may be needed to correlate sen-
sor data and make any needed near-real-time decisions.
However, the devices in the home are unlikely to have
appreciable storage and processing power, so most pro-
cessing must be moved to the cloud.

To meet these goals, the SMILE architecture is cre-
ated using distributed processes modeled through soft-
ware agents that either run as part of the web service in
the cloud or execute in the home on the home’s central
computing device, which acts as a hub to collect sensor
data and or interact with residents in the home. All
SMILE devices like sensors, widgets for browser visua-
lization, or actuators are operated using software
agents. Each agent wraps the technology and offers an
interface for data collection and device control to gen-
erate a smart home response. To handle updates, new
or updated agents would be signed to establish authen-
ticity and pushed to the hub or the cloud.

The sensor boxes in our experiments are created
using commonly available sensors and ICs such as sin-
gle board computer nodes, temperature, light, pressure,
and infrared sensors. Separate sensor boxes are assem-
bled using electronic components for creating the sen-
sors. The sensors gauge environmental data and the
ESP8266 IoT node in each box collects and sends the
data using the Message Queuing Telemetry Transport
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(MQTT) application layer protocol for reliable data
delivery. All wireless devices transport data in the home
through a wireless access point to the Raspberry Pi,
which acts as the sensor hub.

The data packets sent by the mesh network are
received by a Raspberry Pi platform running the Sensor
Data Distribution (SDD) software on a continuous
basis. The packets are then forwarded by the SDD over
an internal User Datagram Protocol (UDP) channel to
sensor agents which are sensor processing units running
on the Pi platform. The sensor agents can be restarted
remotely, replaced or shut down as required in the pro-
cess of smart home data collection.

The sensor agents running on the Pi hub have wired
Internet communication to a web service in the cloud.
For the experiments reported on in this article, the web
service simply stored the sensor values in a sensor data-
base. In a complete SMILE system, the web service
would process the accumulated smart home data utiliz-
ing machine-learning algorithms to deduce activities in
the home in order to provide smart assistance for
assisted living as required. The web service and the sen-
sor agents are implemented using Java EE and Java,
respectively.

Related works on IoT network security

There seems little reason to doubt that the scale and
reach of IoT systems will continue to expand rapidly.
Many modular, application-specific IoT devices are in
the market today, incorporating dedicated hardware
combined with network connectivity to the cloud for
data collection and processing. Bain and Co. forecast
that the IoT market will grow to US$520 billion in
2021,3 while IDC estimates the spending on IoT to
reach 1.2 trillion by 2022.

There are, however, multiple technological and
social hurdles that need to be addressed.9 Prominent
problems for IoT acceptability include making devices
smarter by facilitating their adjustment and autono-
mous performance; ensuring security, privacy, and
trust; and empowerment of total interoperability of
interconnected IoT gadgets. A basic consideration is
the security of personal data. This issue is gaining pro-
minence with the growing awareness of the possible
impacts of loss of privacy.10 While some possible stan-
dards have started to emerge on the horizon, there still
seems to be no consensus among IoT product manufac-
turers regarding the implementation of security in IoT
devices.11 The US National Intelligence Council lists
IoT as one of the six civil technologies that are poten-
tially disruptive and could impact US national power.12

Several serious security incidents involving IoT have
already occurred. Millions of healthcare records have
been leaked,13 the signaling system for the CSX Train

network was attacked,14 a variety of new vehicle models
were hacked forcing recalls,15 the readings of smart
energy meters were altered,16 and a major portion of
the Internet was brought down through distributed
denial-of-service (DDoS) attacks from baby monitors.17

Such incidents imply that serious security considera-
tions need to be incorporated into the process of IoT
system design. The design must contemplate both the
security of the IoT devices and the issues raised when
such devices are connected to a cloud platform. Cloud
services have considerable advantages due to the lack of
restrictions on fixed infrastructure and features such as
location transparency, service abstraction, and dynamic
scalability. However, security considerations become
crucially important on the cloud due to enormous stor-
age requirements combined with the need for fast access
and information processing.18

A detailed survey on the considerations and issues in
IoT security is offered by Jing et al.19 The article also
investigates and suggests ways to heterogeneously
incorporate IoT products and services across layers.
Security becomes a vital design objective for data-in-
transit security, where data are encrypted and hashed
before transmission over the Internet. This processing
has a considerable influence on performance which has
been overlooked by researchers so far.20 Müller et al.21

describe research to ascertain the performance impact
of security strategy decisions in arbitrary cloud database
systems and the impact of using certain combinations
of encryption and hashing algorithms in Cassandra and
DynamoDB.

Motivated by the innovations available through
cloud computing, Kardas et al.22 proposed a security
and privacy model for radio-frequency identification
(RFID) systems merged with the cloud computing
model to enhance scalability and performance while
preserving security and privacy of the system. The work
reported by Sun et al.23 primarily aims to emphasize
the major security, privacy, and trust concerns in cur-
rent cloud computing systems and assist users in recog-
nizing the tangible and intangible threats they present.

Few works in the literature studied the various
trade-offs in IoT environments. Zhang et al.24 use an
unreliable link model to investigate the trade-off
between the energy consumption and wireless commu-
nication in a multihop network. The framework in
Tasiopoulos et al.25 surveys delay-tolerant networks
(DTNs) for trade-offs between the packet delivery
delay and types of packet transportation costs in wired
network and mobile wireless network environments.

The research presented in Mukherjee et al.26 dis-
cusses the wide-stretching application security demands
for IoT and varied network-edge resource limitations
for end-to-end cloud-fog communication. The authors
present a secure end-to-end protocol for resource-
limited devices by adjusting security functionality used
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in unconstrained devices. Similar work was reported in
Tewari and Gupta,27 which analyzes the security prob-
lems of each layer in the Transmission Control
Protocol/Internet Protocol (TCP/IP) model and the
issues related to cross-layer heterogeneous integration
and security.

Wireless network experiment

The instrumentation setup starts with the wireless sen-
sors that sense ambient physical parameters and relay
the data to the next stage in the sequence, the sensor
agent over a wireless link. The following section explains
the details of the wireless network configurations.

Experimental setup

A smart home involves a limited, manageable number
of IoT sensors and actuators making scalability in the
wireless network a non-issue but the same cannot be
asserted about the integrity and confidentiality aspects
of the application data. The IoT network is prone to
spoofing and sniffer attacks for collecting unauthorized
data and disruption of applications and services.
Resorting to encryption of IoT sensor and actuator data
using a shared key working, the sensor and the sensor
agent could take care of integrity and confidentiality.

Sensor agents are deployed to receive transmitted
sensor data relating to physical quantities on wireless
links from sensor nodes in a smart home. By default,
these transmissions are plain text and are vulnerable to
tapping by a tuned receiver, making listening and man-
in-the-middle attacks a potential threat. To add
application-level security and reduce the risks of such
threats to this data, we encrypted it prior to transmis-
sion. Due to high frequency and hence high amount of
generated data, the time taken at the smart sensor
nodes to encrypt sensor data could add additional
encoding latency in addition to local processing delay.
In our experiment, we measured the mentioned delay
in communication post encryption and contrasted the
throughputs with and without encryption.

Managing the energy consumption in wireless IoT
sensors and actuators is an important consideration for
smart home designers because of battery-based power
of such sensors and actuators. The limitation of power-
ing remote IoT sensors and actuators makes it essential
for the designers to also keep battery life and the num-
ber of replacements in perspective. The power con-
sumption in sensors involves uses in transduction,
analog-to-digital conversion, and further processing
followed by transmission and reception. Encrypting
sensor data would mean more power required for pro-
cessing, adding to the power consumption. This addi-
tional energy consumption due to encryption can be

found out by checking the battery drain. This battery
consumption can be optimized.28

In the experiments for the wireless network config-
uration, we used ESP8266-based sensor boards. The
ESP8266 is a low-cost, 32-bit, Wi-Fi-enabled microcon-
troller chip running full, integrated TCP/IP protocol
stack. It requires nominal external circuitry and incor-
porates the microcontroller, standard digital peripheral
interfaces, filters, amplifiers, RF balancing unit,
antenna switches, and power management units in the
same package. It can be used to provide cost-effective,
low-power, highly integrated Wi-Fi solutions.

The ESP8266 system-on-chip (SoC) microcontroller
board comes with a 2.4-GHz Wi-Fi (802.11 b/g/n, sup-
porting WPA/WPA2) built into it. It is apt for building
applications for wireless sensor networks and WiFi-
enabled IoT systems. Our experimental setup used a
specific model of ESP8266, the ESP-12E, to study the
performance of an IoT node in encrypting and sending
a stream of data over the TCP/IP protocol stack.

Our IoT network utilizes the MQTT protocol as the
application layer protocol for reliable data delivery.29

MQTT is a widely used protocol best suited for mes-
sage delivery to remote locations that have low net-
work bandwidth and/or low processing capabilities. It
is a Publish–Subscribe protocol which means that any
nodes subscribed to a topic on the MQTT broker
receive all the messages published to that topic by any
other node that publishes to it. This project uses the
Mosquitto as the MQTT broker and PubSubClient as
the client.

The reason behind the choice of MQTT as against a
more secure MQTT-SN (MQTT for Sensor Networks)
was the end-to-end travel of data from the sensors to
the cloud which could not be done completely through
datagrams for reasons of error and inefficiency. While
MQTT-SN would be a good choice for a secure proto-
col at the local network level, using it in the links
beyond the local network to the broker would not be a
wise choice.

Moreover, not all brokers offer a robust support for
Transport Layer Security (TLS) now. The authors tried
to keep the scenarios general, and not specific. In sub-
sequent research work, the scenarios with TLS can be
implemented and compared for the added TLS over-
head. If the scenarios were limited to the local network,
MQTT-SN would certainly be an added level of secu-
rity, but the scenarios modeled go up to the cloud.
Hence, the protocol chosen had to be one that works
locally, as well as up to the broker.

The network was setup in two different configura-
tions to measure the latency, reliability, and consistency
of the data transmitted over the network. Each of these
two networks consists of a sensor node running the
PubSubClient, a WiFi router, and a receiving node that
hosts the MQTT broker. The two configurations were
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chosen because one of the configurations uses a local
router working using WiFi connectivity, while the cell-
phone hotspot implements the scenario for 4G LTE
connectivity providing us with two sets of data trans-
mission parameters. We have not tried to compare the
transmissions, because the performance of the two
transmission mechanisms would depend on other fac-
tors such as bandwidths of the connections, infrastruc-
ture support, LTE coverage, interference, and mobility.
The two configurations are as follows:

1. ESP8266 (sensor node)—Netgear N450 (WiFi
router)—Raspberry Pi 3 (receiving node): the
Raspberry Pi 3 was installed with Mosquitto
broker and configured to listen at 1883 for
MQTT connections, as shown in Figure 2.

2. ESP8266 (sensor node)—Android smartphone
mobile hotspot (WiFi router)—Raspberry Pi
(receiving node): an Android smartphone was
configured to serve as a WiFi hotspot at a
unique SSID to receive connections from only
known hosts. This setup was used to simulate
an isolated network for getting unaffected read-
ings for the latency of the data transfer, as
shown in Figure 3.

In both the network configurations, the ESP8266
was flashed with the same code involving the transfer
of a dataset comprising 10,000 24-byte string values. In
each case, after establishing a WiFi connection with the
router, ESP-12E would start sending the assigned num-
ber of 24-byte strings over MQTT after one or two
rounds of Advanced Encryption Standard–Cipher Block
Chaining (AES-CBC) encryption on every string of data.
An AES library was used for encrypting the 24-byte
strings. The AES block size used was 128 bits for both
types of encryptions. Although the authors have not
used too many sensors in their setup, in a real smart
home scenario, there could be ten to hundreds of sensors
in a home or neighborhood. A block cipher was used by
us because key management could become a possible
issue with stream ciphers due to high number of key
requirements while scaling the network up to more num-
ber of sensors. For both the configurations, the same size
datasets were used to obtain the latency values for the
data transfer. Multiple iterations were performed on
both the configurations to obtain statistical consistency
in the readings. Several observations were made regard-
ing the behavior of the IoT network depending on the
network activities of the home-based network, consider-
ing it a traditional smart-home system network.

Figure 2. IoTwireless sensor network configuration 1.

Figure 3. IoTwireless sensor network configuration 2.

6 International Journal of Distributed Sensor Networks



Experimental results

Like several other off-the-shelf sensors commonly avail-
able, the sensors that we used for building the IoT
smart home did not come with in-built hardware secu-
rity. Security was an add-on feature to these sensors.
To get a base time for raw, unencrypted data were sent
and the transmission times were noted for the sensor
values across 10,000 messages to get a good average.
This was done for two different media using a home
router for connection in one setup and the cellphone
hotspot in the other. Five different runs of the experi-
ment were performed to ascertain a range on variability
of transmission time. Transmission times were also
noted for the same number of messages in five different

runs for encrypting and then sending the data. The data
were then encrypted for the second time to improve the
security and times were noted as before. Table 1 and
Figure 4 show the findings of the experiments for the
two connectivity media arrangements. As expected, a
delay in the transmission time was found in case of sin-
gle encryption, which increased for double encryption
for both the media. However, it was observed that the
overhead for encryption through software was not too
high and was negligible for most real-time purposes,
even with the cellphone being used as a router.

Wired network experiments

The wired portion of our IoT sensor network consists
of the components on the right side of Figure 1, that is,
the Raspberry Pi with its sensor agent, the cloud-hosted
web service that receives sensor data, and the cloud-
hosted sensor database that stores the sensor data. We
ran experiments on four different configurations having
different security and scalability attributes.

Configuration 1: base system and minimal security,
with no scalability

In this configuration, an Amazon Web Services (AWS)
EC2 running Ubuntu server is used for hosting the
MySQL sensor database and the web service running on
a Glassfish server, as proposed in Reichherzer et al.5 The
sensor agent communicates with the web service through
unsecured Hypertext Transfer Protocol (HTTP) messages.

We judge confidentiality, integrity, availability, and
scalability to be poor in this configuration (Table 2).
There is no confidentiality or data integrity because the
HTTP connection is unsecured and could be monitored
or spoofed. Availability is limited because the single
AWS instance and its Internet endpoint provide a sin-
gle point of failure. Some awkward limited vertical
scaling is possible since the instance can be shut down
and replaced by one with more compute power. But
the service and database cannot be smoothly horizon-
tally scaled by adding more instances.

Table 1. Time taken (in milliseconds) for the data transmission per message.

Trial Medium: home router (delay per message in ms) Medium: cellphone hotspot (delay per message in ms)

No
encryption

AES-CBC
single encryption

AES-CBC
double encryption

No
encryption

AES-CBC
single encryption

AES-CBC
double encryption

1 0.169 0.2 0.336 0.231 0.253 0.363
2 0.183 0.208 0.314 0.238 0.265 0.361
3 0.169 0.202 0.331 0.252 0.277 0.357
4 0.168 0.189 0.317 0.238 0.281 0.366
5 0.18 0.223 0.31 0.242 0.269 0.368

AES: Advanced Encryption Standard; CBC: Cipher Block Chaining.

Figure 4. Comparison of latencies for wireless configurations.
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Configuration 2: message security, with no scalability

In this configuration, we host the web service and the
sensor database as before, on a single AWS instance
using the same operating system, application server,
and database server. However, the Glassfish applica-
tion server is now configured for HTTPS (Secure
Sockets Layer—SSL) messaging utilizing a certificate
signed by a well-known certification authority.

In this configuration, moderate confidentiality and
data integrity are provided by the encrypted SSL messa-
ging. The signed certificate guarantees that messages are
being sent to the correct endpoint. However, there is still
no authentication of the sensor agent, so the web service
has no such guarantee as to the source of the data it is
receiving. Availability and scalability continue to be
poor, for the same reasons given for configuration 1.

Configuration 3: message security and agent
authentication, with no scalability

This configuration builds on the previous one by
assigning credentials to the sensor agent consisting of a
username and password. These are sent as part of each
message and are used by the web service to authenticate
the source of incoming messages. Authentication is
done using the same MySQL database server which is
given an additional table to hold usernames and hashed
passwords.

We would rate the confidentiality and data integrity
characteristics of this configuration as good (Table 2).
It shares with configuration 2 the encrypted SSL mes-
saging. In addition, authentication is now bidirectional,
with both certificate authentication of web service to
sensor agent and password authentication of sensor
agent to web service. Thus, the web service now has
some assurance of the integrity of the data it receives.
If, for example, a sensor agent were compromised, its
credentials could be revoked to limit the damage it
could do. The availability and scalability characteristics
of this configuration continue to be poor due to the
continued reliance on a single hardware instance.

Configuration 4: commercial security and scalability

Several companies now provide computing infra-
structure that allows developers to create software

applications that are both secure and scalable. Our
fourth configuration relies on such an infrastructure,
the collection of AWS.

In this configuration, the sensor agent, instead of
transmitting to the web service directly, sends its mes-
sages to an HTTPS endpoint for AWS Kinesis Streams.
This is a service for real-time handling of large streams
of data records.30 Capacity can be scaled up or down
on-the-fly by adding or removing ‘‘shards,’’ each provid-
ing a certain volume of message processing capacity.31

The web service is replaced by a Java function, com-
piled into a jar file and deployed to the AWS Lambda
service.32 AWS Lambda is an autoscaling serverless
compute service that runs event-based code fragments.
Lambda polls our Kinesis stream and triggers a call to
the Java function when a batch of records is available
for processing.

When triggered, the Java function reads input
records from the Kinesis stream and writes them to a
table in AWS DynamoDB, a managed NoSQL data-
base service which acts as the sensor database.
DynamoDB provides availability by automatically dis-
tributing traffic across multiple servers and by automat-
ically replicating data across independent ‘‘availability
zones’’ thus avoiding a single point of failure.33 As with
Kinesis, read/write capacity of a DynamoDB table can
be scaled up or down on-the-fly.

Underlying Kinesis, Lambda, and DynamoDB is the
AWS Identity and Access Management (IAM) service.
This is a service that controls access to AWS resources
by providing authentication and authorization func-
tions.34 The sensor agent authenticates to Kinesis using
IAM-issued credentials. Similarly, the Lambda func-
tion uses an IAM-issued role to read from our Kinesis
stream and to write to our DynamoDB table.

We rate the confidentiality and data integrity of con-
figuration 4 as good since, combined with the use of
HTTPS for messaging, the IAM-based authentications
guarantee data confidentiality and integrity all the way
from the sensor agent to the sensor database. Similarly,
we rate availability as good, since all the AWS services
claim high availability based on redundancy in their
underlying infrastructure. (For highest availability,
AWS encourages users to distribute their applications
across multiple AWS availability zones, whose data
centers are independent of each other.35 We did not
explore this kind of redundancy in our experiments.)
Scalability is also good, since each service incorporates
automatic or semi-automatic on-the-fly scaling.

Experimental procedure

For the wired network experiments, simulated sensor
data messages were generated at the sensor agent on the
Raspberry Pi hub and transmitted to the web service.
All four configurations were tested. Each experimental

Table 2. Summary of information security attributes.

Configuration Confidentiality Integrity Availability Scalability

1 Poor Poor Poor Poor
2 Moderate Moderate Poor Poor
3 Good Good Poor Poor
4 Good Good Good Good
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run lasted approximately 300 s. The following para-
meters were varied giving four runs for each configura-
tion, that is, 16 runs in total:

� Data rate: low rate, five messages per second or
max rate, as fast as the Raspberry Pi could send.

� Packet size: 24 bytes or 1024 bytes.

The clocks on the Raspberry Pi and the servers
involved in the experiments were synchronized using
NTP services, which allows for measured time differ-
ences to be attributable to processing and transmission
latencies and not clock differences. The following times
in milliseconds were collected for each message:

t1—message sent from hub;
t2—message received at the web service;
t3—write to data store completed.

The primary measure for evaluating each configura-
tion is end-to-end latency, defined as t3 – t1. This mea-
sure would probably be the chief concern of an IoT
system designer since it is the time between data gener-
ation and availability for processing. Secondary mea-
sures include transmission latency, defined as t2 – t1,
and processing latency, defined as t3 – t2. These allow
us to identify the relative importance of delays incurred
in transmitting to the cloud as compared to delays
occurring during processing within the web service and
data store.

Experimental results

Tables 3 and 4 show the results of the 16 experimental
runs. Comparing configurations 1 and 2, we can see

that the average end-to-end latency penalty for using
SSL message security is quite modest. For example,
using the maximum data rate and the 1024-byte mes-
sages, the average time goes from 19.2 to 23.3 ms.
Similarly, comparing configuration 2 and 3, the penalty
for agent authentication remains small. Using the same
example of maximum data rate and 1024-byte records,
we go from 23.3 to 29.9 ms.

The situation changes radically when we compare
configuration 4, with the commercial security and sta-
bility, to the earlier configurations. The end-to-end
latency goes from 29.9 ms to values of over 5 s. To
identify the source of the difference, we can look at the
two components of end-to-end latency, that is, the
transmission latency and the processing latency. Table
4 shows the average processing latency on the web ser-
vice. Except for configuration 4, processing latency is
almost zero, indicating that processing time is essen-
tially trivial. This shows that the end-to-end delays
come almost entirely in transmitting data from the sen-
sor agent to the web service.

For configuration 4, while it is still true that most
of the end-to-end latency is transmission latency, the
processing latency is more significant, averaging
between 130 ms and more than 2 s depending on the
data rate and message size. For many IoT applica-
tions, the variability of latency may be just as impor-
tant as the average latency. Variability is most easily
seen graphically. Figure 5 plots the end-to-end latency
in the maximum data rate runs for the three config-
urations. The first sample which was a peak with con-
siderably more amplitude than the rest of the data
and could be considered an impediment for showcas-
ing the real nature of latency variations has been
excluded from the graphs.

Table 3. Average end-to-end latency (ms).

Data rate Low rate Max. rate

Message size (bytes) 24 1024 24 1024
Configuration 1: base, minimal security, no scalability 20.8 20.6 18.8 19.2
Configuration 2: message security, no scalability 20.8 23 18.4 23.3
Configuration 3: message security, agent authentication, no scalability 21.8 20.2 25.6 29.9
Configuration 4: commercial security and scalability 2101 1696 12,425.6 5899

Table 4. Average processing latency (ms).

Data rate Low rate Max. rate

Message size (bytes) 24 1024 24 1024
Configuration 1: base, minimal security, no scalability 0.11 0.09 0.06 0.05
Configuration 2: message security, no scalability 0.06 0.07 0.04 0.06
Configuration 3: message security, agent authentication, no scalability 0.23 0.63 0.16 0.25
Configuration 4: commercial security and scalability 295 130 2118 1357
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Figure 5. End-to-end latency plots—maximum data rate.
Plots have different vertical scales.
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The picture is broadly the same across configura-
tions 1 to 3. The first message in each run has a large
latency, presumably due to the cost of establishing the
network connection. This initial latency is higher when
HTTPS is used in configurations 2 and 3, which is
expected because the session encryption key must be
negotiated before transmission begins.

After the initial peak, each plot shows a roughly con-
stant latency but with spikes from time to time. These
presumably represent moments when resources are de-
allocated and re-allocated in the underlying computing
infrastructure as connections are being re-established.

For configuration 4, with the commercial infrastruc-
ture, the picture is very different. The plot shows broad
increases and decreases over the 300-s period of the run.
Also, we see a spiky, almost sawtooth-like, behavior.
Finally, there is substantial difference between process-
ing of the 24-byte and the 1024-byte messages.

The greater complexity of the behavior of configura-
tion 4 is perhaps natural considering the greater com-
plexity of the processing needed in a commercial IoT
infrastructure. Consider just one aspect, authorization.
In configuration 3, authorization is accomplished sim-
ply by including a username and password in the sensor
agent’s message to the web service. The web service
sends a query to a database table located on the same
node and access is authorized if the hashed passwords
match.

In the commercial AWS infrastructure, authoriza-
tion happens multiple times for each message. The sen-
sor agent presents credentials to Kinesis to request the
right to use the stream. The Lambda function presents
credentials to Kinesis to request the right to pull data
from the stream and to DynamoDB to request permis-
sion to write to the data store. In each case, the IAM
service is consulted to create a context around each

request, to consult the different policy documents that
govern authorization, and to arrive at a conclusion as
to whether each request should be allowed or denied.36

Compared to configuration 3, the IAM authorization
process involves a lot of overhead and several opportu-
nities for variability.

Variability is not only due to authorization and
IAM. Kinesis, Lambda, and DynamoDB are also likely
to require multiple message communications between
multiple nodes to fulfill each task. These nodes are
shared across the AWS user base, so processing time
can be affected by concurrent actions of other AWS
users sharing the same infrastructure.

The results suggest that AWS services likely use buf-
fering and batching strategies to improve average
response time, but with the consequence that latency
times can have additional sawtooth-like variability as
shown in Figure 6. This figure shows the time that con-
figuration 4’s web service required to process each sen-
sor message, from message receipt until the DynamoDB
service reported that the corresponding data message
had been written. As can be seen, the processing latency
varied systematically from near 0 to 6 s. This kind of
variability has also been reported by Bermbach in his
benchmark studies of cloud services and should perhaps
be taken as normal by IoT application developers.20

Discussion and conclusion

Security implications create obstacles for wider accep-
tance of smart homes. As the smart home market
grows, the attack surface for an IoT network within
the home grows with it. Smart home applications face
attacks ranging from snooping on transmissions and
traffic analysis or leak of message contents to altera-
tion, fabrication, disruption of communications

Figure 6. Configuration 4—processing time for 24-byte records.
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through node-capture, routing attacks, or flooding. In
several commercially available devices, sensitive data
pertaining to parameters from the human body are
transmitted over wireless or wired links with little or no
security. The goal of this study was to explore the
trade-offs in security solutions for IoT applications
including smart home systems.

Our cloud-based model measured processing over-
head while improving on security in the prototype net-
work and adding more scalable services to the system.
Our results hinge heavily on the effectiveness of the
employed tools as well as the AWS. Alternative imple-
mentations may yield different performance findings
on the efficacy of communicating sensor data to the
Web Store with further processing. However, outside
the productivity limitations of the code and hardware
we used, the current tools and frameworks used in our
experiments are industry standard and widely used.
Thus, we hope that our results will be representative of
what might be encountered in other smart home or IoT
systems with regard to the price of security and
scalability.

Real-time constraints on data collected in a smart
home or any other IoT application will vary based on
the specifics of the application. The aim of this study
was to assess the impact of security overhead on real-
time availability of data. The experiment has shown a
dramatic difference between custom-built solutions and
the use of scalable, secured commercial infrastructure
solutions such as AWS. The overhead of adding secu-
rity in customized solutions as illustrated in configura-
tions 1 to 3 was minimal compared to AWS as
measured in configuration 4. There was also a great
variability in latency when using AWS. It is interesting
to note that, from the experiments described in this
article, AWS has announced specialized IoT develop-
ment kits and services marketed as ‘‘IoT Core.’’37 It
would be interesting to see if the use of these services
reduces the performance variabilities that we have
identified.

In developing real-time systems, it is vital to consider
the trade-off between scalability and robust security
versus performance in adopting commercial solutions.
As our experiments have shown, the greater variability
can make a difference in how real-time IoT systems
respond to events occurring in smart homes and other
IoT applications. In most cases, security cannot be
compromised but the platform can be chosen in accor-
dance with the real-time constraints of the application.
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