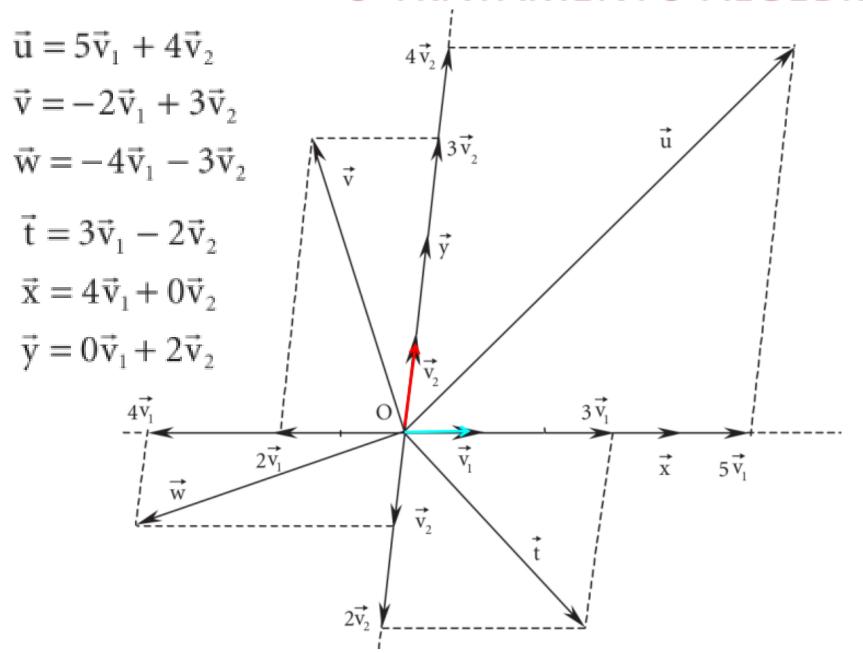
O TRATAMENTO ALGÉBRICO



De modo geral, dados dois vetores quaisquer \vec{v}_1 e \vec{v}_2 não paralelos, \vec{v}_1 representado no mesmo plano de \vec{v}_1 e \vec{v}_2 , existe uma só dupla de números reais \vec{a}_1 e \vec{a}_2 tal que

$$\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2$$
 (1)

Quando o vetor \vec{v} é expresso como em (1), diz-se que \vec{v} é combinação linear de \vec{v}_1 e \vec{v}_2 . O conjunto $\vec{b} = {\vec{v}_1, \vec{v}_2}$ é chamado base no plano.

Os números $\underline{a_1}$ e $\underline{a_2}$ da igualdade (1) são chamados *componentes* ou *coordenadas* de \vec{v} na base B ($\underline{a_1}$ é a primeira componente, e $\underline{a_2}$, a segunda).

O vetor \vec{v} da igualdade (1) pode ser representado também por $\vec{v} = (a_1, a_2)_B$ ou $\vec{v}_B = (a_1, a_2)$.

Uma base $\{\vec{e}_1, \vec{e}_2\}$ é dita ortonormal se seus vetores forem ortogonais e unitários, ou seja, se $\vec{e}_1 \perp \vec{e}_2$ e $|\vec{e}_1| = |\vec{e}_2| = 1$.

Entre as infinitas bases ortonormais no plano, uma delas é particularmente importante. Trata-se da base que determina o conhecido sistema cartesiano ortogonal xOy. Os vetores ortogonais e unitários, neste caso, são simbolizados por i e j ambos com origem em O e extremidades em (1,0) e (0,1), respectivamente (Figura 1.40), sendo a base $C = \{\vec{i}, \vec{j}\}$ chamada canônica. Portanto, $\vec{i} = (1, 0) \ \vec{j} = (0, 1).$

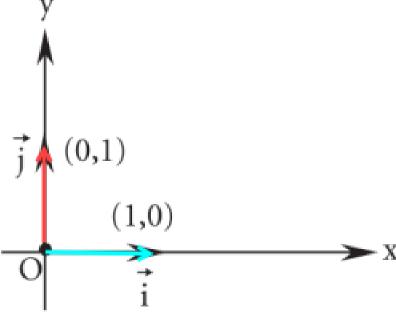


Figura 1.40

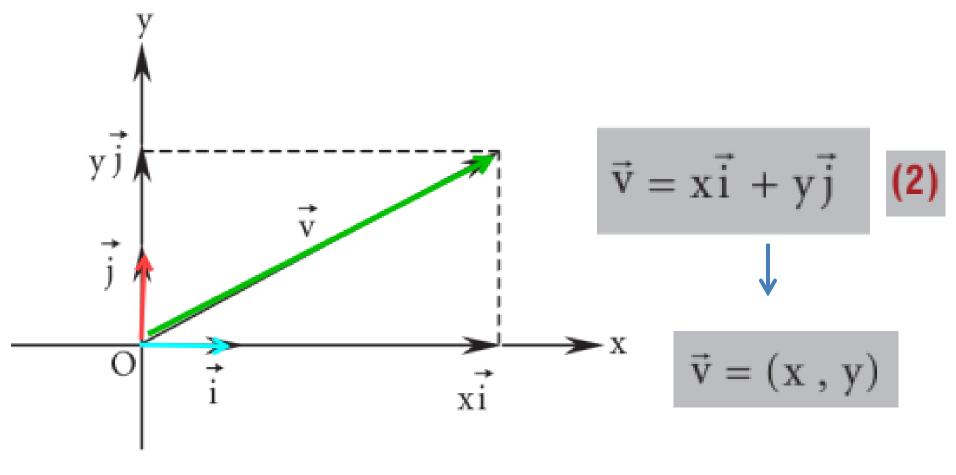
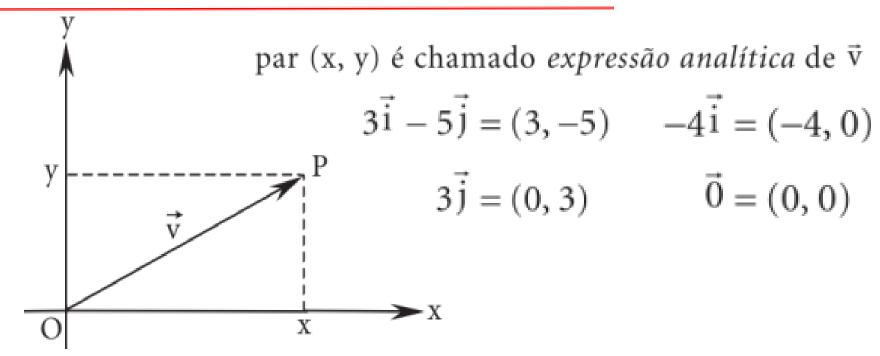


Figura 1.41

x e y são as componentes de v na base canônica.

Vetor no plano é um par ordenado (x, y) de números reais.

A escolha proposital da base $\{\vec{i}, \vec{j}\}$ deve-se exclusivamente à simplificação. A cada ponto P(x, y) do plano xOy corresponde o vetor $\vec{v} = \overrightarrow{OP} = x\vec{i} + y\vec{j}$ (Figura 1.42). Quer dizer que as coordenadas do ponto extremo P são as próprias componentes do vetor \overrightarrow{OP} na base canônica. Em geral, deixa-se de indicar nos eixos os vetores \vec{i} e \vec{j} como se vê na figura.



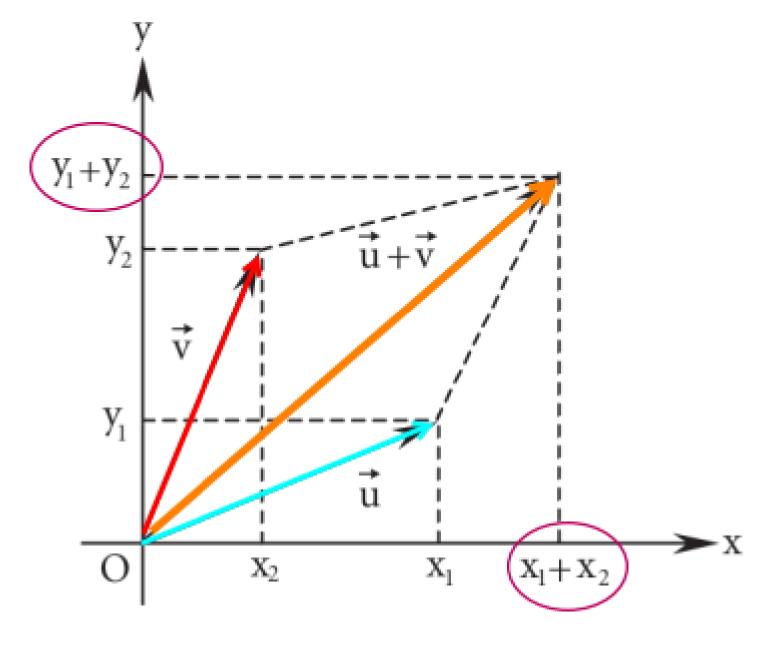
Dois vetores $\vec{u} = (x_1, y_1)$ e $\vec{v} = (x_2, y_2)$ são iguais se, e somente se,

$$x_1 = x_2 e y_1 = y_2$$

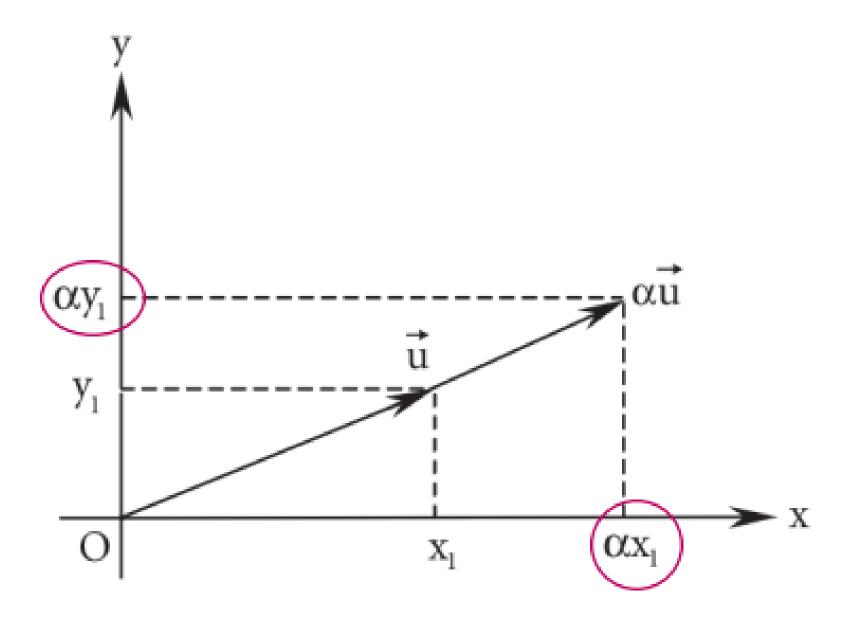
Operações com vetores

Sejam os vetores $\vec{\mathbf{u}} = (\mathbf{x}_1, \mathbf{y}_1)$ e $\vec{\mathbf{v}} = (\mathbf{x}_2, \mathbf{y}_2)$ e $\alpha \in \mathbb{R}$. Define-se:

- 1) $\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2)$
- 2) $\alpha \vec{\mathbf{u}} = (\alpha \mathbf{x}_1, \alpha \mathbf{y}_1)$



$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = (x_1, y_1) + (-x_2, -y_2) = (x_1 - x_2, y_1 - y_2)$$



$$-\vec{u} = (-1)\vec{u} = (-x_1, -y_1)$$

propriedades:

a) para quaisquer vetores \vec{u} , \vec{v} e \vec{w} , tem-se

$$\vec{u}+\vec{v}=\vec{v}+\vec{u}$$

$$\vec{u}+\vec{0}=\vec{u}$$

$$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$$

$$\vec{u}+(-\vec{u})=\vec{0}$$

b) para quaisquer vetores \vec{u} e \vec{v} e os números reais α e β , tem-se

$$\alpha(\beta\vec{v}) \ r = (\alpha\beta)\vec{v}$$

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}$$

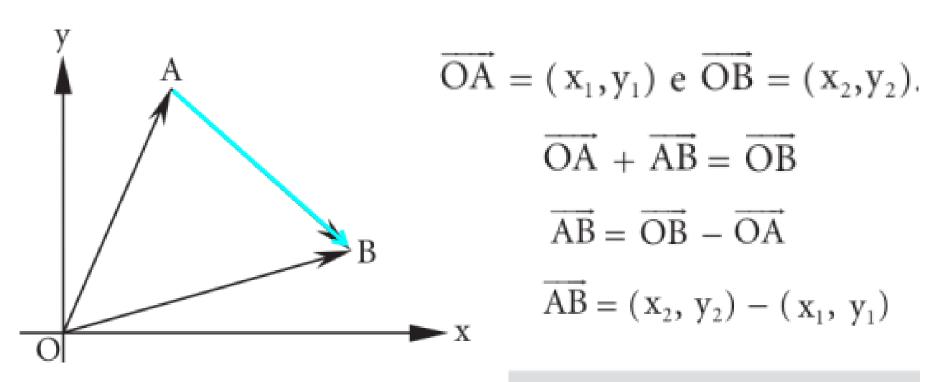
$$\alpha(\vec{u} + \vec{v}) = \alpha\vec{u} + \alpha\vec{v}$$

$$1\vec{v} = \vec{v}$$

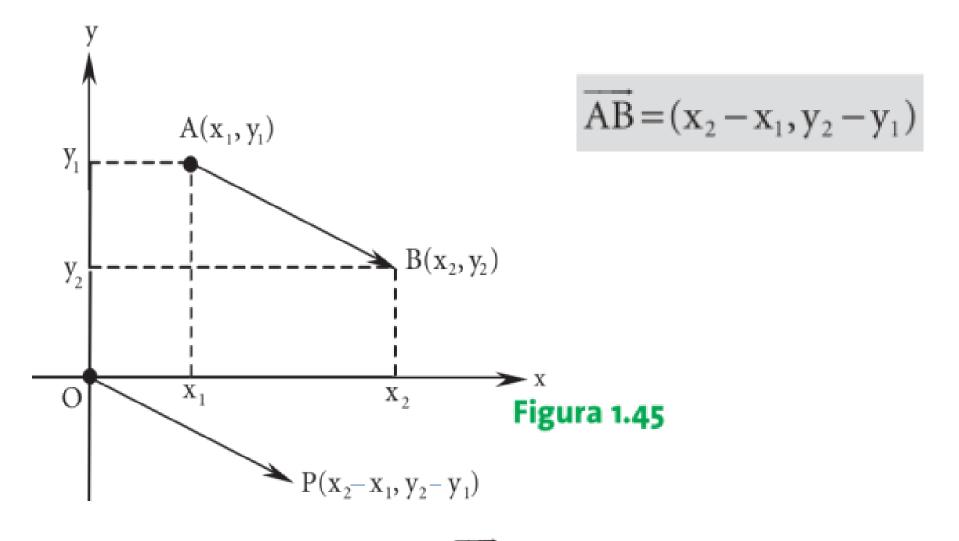
Sugerimos, como exercício ao leitor, demonstrar essas propriedades.

Vetor definido por dois pontos

vetor \overrightarrow{AB} de origem no ponto $A(x_1, y_1)$ e extremidade em $B(x_2, y_2)$

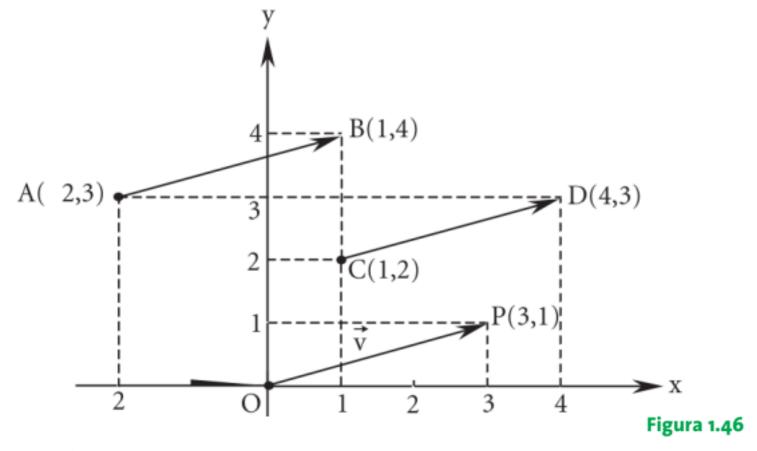


$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$$



vetor AB, o que "melhor o caracteriza" $P(x_2 - x_1, y_2 - y_1)$ (Figura 1.45).

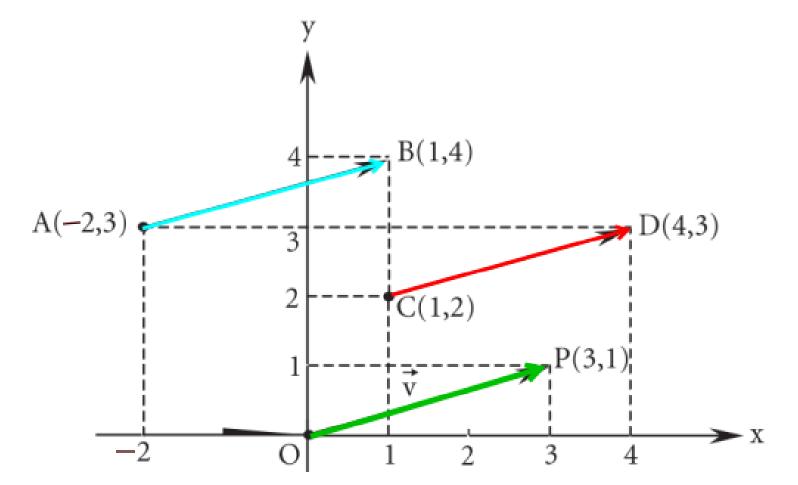
 $\vec{v} = \overrightarrow{OP}$ é também chamado de *vetor posição* ou *representante natural* de \overrightarrow{AB} .



$$\vec{v} = \overrightarrow{AB} \text{ ou } \vec{v} = B - A$$

$$B = A + \vec{v} \text{ ou } B = A + \overrightarrow{AB}$$

o vetor \vec{v} "transporta" o ponto inicial A para o ponto extremo B.

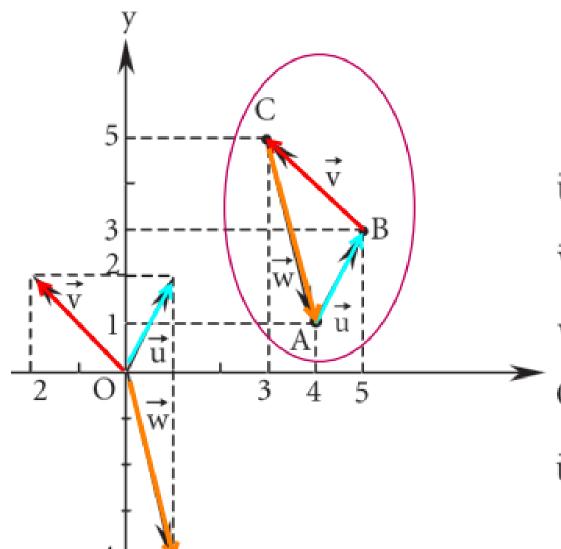


Retornando à Figura 1.46, na qual $\vec{v} = (3, 1)$, tem-se

$$B = A + \vec{v} = (-2, 3) \downarrow (3, 1) = (1, 4)$$

$$D = C + \vec{v} = (1, 2) + (3, 1) = (4, 3)$$

$$P = O + \vec{v} = (0, 0) + (3, 1) = (3, 1)$$



$$\vec{\mathbf{u}} = \overrightarrow{\mathbf{A}\mathbf{B}} = \mathbf{B} - \mathbf{A} = (1, 2)$$

$$\vec{\mathbf{v}} = \overrightarrow{\mathbf{BC}} = \mathbf{C} - \mathbf{B} = (-2, 2)$$

$$\vec{\mathbf{w}} = \overrightarrow{\mathbf{CA}} = \mathbf{A} - \mathbf{C} = (1, -4)$$

Observamos ainda que

$$\vec{u} + \vec{v} + \vec{w} = \vec{0} = (0, 0).$$